

Available online at www.sciencedirect.com

materials letters

Materials Letters 59 (2005) 2751 - 2754

www.elsevier.com/locate/matlet

Investigations of the local structure and the *g* factors for the tetragonal Er^{3+} center in KMgF₃

Shao-Yi Wu^{a,b,*}, Hui-Ning Dong^{b,c}

^aDepartment of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

^bInternational Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

^cCollege of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Received 17 January 2005; accepted 31 March 2005 Available online 13 May 2005

Abstract

The local structure and the electron paramagnetic resonance (EPR) *g* factors for the tetragonal Er^{3+} center in KMgF₃ are theoretically studied by using the perturbation formulas of the *g* factors for a 4f¹¹ ion in tetragonal symmetry. In these formulas, the contributions to the *g* factors from the second-order perturbation terms and the admixtures of various states are taken into account. Based on the studies, the impurity Er^{3+} is expected to occupy the octahedral Mg²⁺ site, associated with an oxygen ion substituting for one of the nearest F⁻ (i.e., O_F) in the C₄ axis, due to charge compensation. Because of the electrostatic attraction of the compensator O_F, the Er^{3+} ion is found to take an axial displacement ΔZ (≈ 0.07 Å) towards the compensator along the C₄ axis. The calculated *g* factors based on the above displacement ΔZ show reasonable agreement with the observed values.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Defects; Electron paramagnetic resonance (EPR); Crystal fields; Er³⁺; KMgF₃

1. Introduction

KMgF₃ has been widely investigated due to the properties of dielectric characteristics, luminescence, green upconversion, laser action with proper dopants, and applications in fast position-sensitive registration systems [1-5]. Recently, this material doped with rare-earth ions (such as Er^{3+} , Ce^{3+}) has attracted extensive attentions because of thermoluminescence (TL), photoluminescence (PL), photoluminescence excitation (PLE), solid state laser and phosphors properties [6-11]. In general, these properties are relevant to local structures of doped rare-earth impurity ions. Since electron paramagnetic resonance (EPR) is a useful technique to study local structures of paramagnetic impurity centers in crystals, experiments have been carried out on Er^{3+} -doped KMgF₃ by means

of the EPR technique. Abraham et. al. [12] found a tetragonal Er^{3+} center (as well as another two trigonal centers) in KMgF₃ and its *g* factors $g_{//}$ and g_{\perp} were also measured by EPR experiment. This tetragonal Er^{3+} center was attributed to the impurity Er^{3+} occupying the octahedral Mg²⁺ site, associated with one substitutional O^{2-} ion at the original nearest F⁻ site (labeled as O_{F}) in the C₄ axis due to charge compensation [12].

Until now, however, no theoretical studies have been made on the above g factors, and the local structure of this tetragonal Er^{3+} center has not been determined, either. In order to verify theoretically the local structure of the tetragonal Er^{3+} center in KMgF₃, which may be useful to understand the properties of this material, and to make satisfactory interpretation to its g factors, we investigate in this paper the local structure and the g factors for the tetragonal Er^{3+} center in KMgF₃ from the perturbation formulas of the g factors for a $4f^{11}$ ion in tetragonal symmetry. In these formulas, the contributions to the g factors arising from the second-order perturbation terms and the admixtures of various states are taken into account.

^{*} Corresponding author. Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

E-mail address: wushaoyi@netease.com (S.-Y. Wu).

⁰¹⁶⁷⁻⁵⁷⁷X/\$ - see front matter ${\ensuremath{\mathbb C}}$ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.matlet.2005.03.052

2. Calculations

In general, rare earth ions (e.g., Ce^{3+} , Pr^{3+} , Eu^{2+}) preferentially substitute for K^+ in KMgF₃ [7,13–16], because they have similarly large radii (≈ 1.034 , 1.013 and 1.09 Å [17]) comparable with that (≈ 1.33 Å [17]) of the replaced K^+ . For Er^{3+} , however, the ionic radius $(\approx 0.881$ Å [17]) is much smaller and close to that $(\approx 0.66 \text{ Å } [17])$ of Mg²⁺. Thus, Er³⁺ can occupy both the dodecahedral K⁺ and the octahedral Mg²⁺ sites and result in three different impurity centers, as pointed out in Ref. [12]. For the studied tetragonal center, Er^{3+} may locate on the octahedral Mg²⁺ site due to their similar size and charge, with the extra positive charge compensated by one nearestneighbouring substitutional OF in the C4 axis [12]. As a result, the tetragonal (C_{4V}) Er^{3+} center, i.e., $[ErF_5O]^{4-}$ cluster, is formed. Because of the negative effective charge of the compensator O_F in the C₄ axis, the impurity Er^{3+} may shift towards the compensator by an amount ΔZ along the C₄ axis due to the electrostatic attraction. Therefore, the local structure of the impurity center can be approximately described by the compensator O_F and the displacement ΔZ of the impurity Er^{3+} (see Fig. 1).

For an $\mathrm{Er}^{3^+}(4f^{11})$ ion in tetragonal (C_{4V}) crystal-fields, the ground state ${}^{4}\mathrm{I}_{15/2}$ would be split into eight Kramers doublets [18,19]. The lowest doublet is Γ_6 or Γ_7 , corresponding to the average value $\bar{g} [=(g_{//+} 2g_{\perp})/3]$ of about 6 or 6.8, respectively [18,19]. From the observed \bar{g} (≈ 6.469 [12]) for the tetragonal Er^{3^+} center in KMgF₃, the lowest Kramers doublet should be Γ_7 . In the treatments of the previous works [18,19], merely the first-order perturbation contributions to the g factors were taken into account. In this work, however, we also include the contributions to the g factors arising from the second-order perturbation terms, which originate from the admixtures between the lowest Γ_7 and the 14 irreducible representations Γ_x due to the tetragonal splitting of the ground ${}^{4}\mathrm{I}_{15/2}$ and the first excited ${}^{4}\mathrm{I}_{13/2}$ states via the crystal-field $\hat{\mathrm{H}}_{\mathrm{CF}}$ and the orbital

Fig. 1. Local structure of the tetragonal Er^{3+} center in KMgF₃. The impurity Er^{3+} occupying the octahedral Mg $^{2+}$ site undergoes the axial displacement ΔZ towards the compensator O_F along the C_4 axis due to electrostatic attraction.

angular momentum \hat{J} interactions. Therefore, the perturbation formulas of the *g* factors for a $4f^{11}$ ion in tetragonal symmetry can be expressed as [20]

$$g_{//} = g_{//}^{(1)} + g_{//}^{(2)}, g_{//}^{(1)} = 2g_{J} < \Gamma\gamma |\hat{J}_{z}|\Gamma\gamma > , g_{//}^{(2)}$$
$$= 2\sum_{x}' \frac{<\Gamma\gamma |\hat{H}_{CF}|\Gamma_{x}\gamma_{x} > <\Gamma_{x}\gamma_{x}|\hat{J}_{z}|\Gamma\gamma >}{E(\Gamma_{x}) - E(\Gamma)}, \qquad (1)$$

$$g_{\perp} = g_{\perp}^{(1)} + g_{\perp}^{(2)}, g_{\perp}^{(1)} = g_{J} < \Gamma \gamma | \hat{\mathbf{J}}_{+} | \Gamma \gamma' > , g_{\perp}^{(2)} = 0.$$
 (2)

Here $\Gamma \gamma^{(\gamma)}(\gamma)$ and γ' stand for the two components of the Γ irreducible representation) is the basic function of the lowest doublet. g_J are the Lande factors for various ${}^{2S+1}L_J$ configurations, which were given in Refs. [18,19] (note: the nondiagonal elements g_J' may occur in the expansions of Eqs. (1) and (2) due to the interactions between different ${}^{2S+1}L_J$ configurations). The basic function $\Gamma \gamma^{(\gamma)}$ contains the admixtures of various states, i.e., the admixture between the ground ${}^{4I}I_{15/2}$ and the excited ${}^{4I}I_{13/2}$ states via \hat{H}_{CF} interaction, the admixture among ${}^{2}K_{15/2}, {}^{2}L_{15/2}$, and ${}^{4I}I_{15/2}$ and that among ${}^{2}K_{13/2}, {}^{2}I_{13/2}$ and ${}^{4I}I_{13/2}$ via spin–orbit coupling interaction. Therefore, the formula of $\Gamma \gamma^{(\gamma)}$ may be written as [20]

$$|\Gamma \gamma^{(\gamma')} \rangle = \sum_{M_{J1}} C \left({}^{4}I_{15/2}; \Gamma \gamma^{(\gamma')} M_{J1} \right) N_{15/2} \\ \times \left(|{}^{4}I_{15/2} M_{J1} \rangle + \lambda_{K} |{}^{2}K_{15/2} M_{J1} \rangle \right) \\ + \lambda_{L} |{}^{2}L_{15/2} M_{J1} \rangle \right) + \sum_{M_{J2}} C$$

$$\times \left({}^{4}I_{13/2}; \Gamma \gamma^{(\gamma')} M_{J2} \right) N_{13/2} \left(|{}^{4}I_{13/2} M_{J2} \rangle \\ + \lambda_{K'} |{}^{2}K_{13/2} M_{J2} \rangle + \lambda_{J} |{}^{2}I_{13/2} M_{J2} \rangle \right),$$
(3)

where M_{J1} and M_{J2} are in the ranges of -15/2 to 15/2 and -13/2 to 13/2, respectively. The coefficients C $({}^{4}I_{15/2}; \Gamma\gamma^{(\gamma')}M_{J1})$ or $C({}^{4}I_{13/2}; \Gamma\gamma^{(\gamma')}M_{J2})$ can be determined by diagonalizing the 30×30 energy matrix including ${}^{4}I_{15/2}$ and ${}^{4}I_{13/2}$ states. λ_i and N_i are the mixing coefficients and the normalization factors. They can be determined from the spin-orbit coupling matrix elements and perturbation method.

The crystal-field interaction \hat{H}_{CF} in the above formulas can be written in terms of the Stevens equivalent operators in tetragonal (C_{4V}) symmetry [18,19]:

$$H_{CF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_6^0 O_6^0 + B_4^4 O_4^4 + B_6^4 O_6^4$$
(4)

The crystal-field parameters B_k^q ($k=2, 4, 6; |q| \le k$) are determined from the superposition model (SPM) [21] and the local geometrical relationship of the studied impurity center, i.e.,

$$\mathbf{B}_{\mathbf{k}}^{\mathbf{q}} = \sum_{j=1}^{\infty} \overline{A}_{k} \left(L_{j} \right) K_{\mathbf{k}}^{\mathbf{q}} \left(\theta_{j}, \phi_{j} \right) \left(R_{0} / R_{j} \right)^{t_{k}}.$$
(5)

The coordination factors K_k^q (θ_j, ϕ_j) can be calculated from the local structural data of the studied system Download English Version:

https://daneshyari.com/en/article/1653839

Download Persian Version:

https://daneshyari.com/article/1653839

Daneshyari.com