

Available online at www.sciencedirect.com

materials letters

Materials Letters 59 (2005) 2751 – 2754

www.elsevier.com/locate/matlet

Investigations of the local structure and the g factors for the tetragonal $Er³⁺ center in KMgF₃$

Shao-Yi Wu^{a,b,*}, Hui-Ning Dong^{b,c}

^aDepartment of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
^bInternational Centre for Materials Physics, Chinase Academy of Sciences, Shanyara 110016, P. P. Chi

^bInternational Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Received 17 January 2005; accepted 31 March 2005 Available online 13 May 2005

Abstract

The local structure and the electron paramagnetic resonance (EPR) g factors for the tetragonal Er^{3+} center in KMgF₃ are theoretically studied by using the perturbation formulas of the g factors for a $4f¹¹$ ion in tetragonal symmetry. In these formulas, the contributions to the g factors from the second-order perturbation terms and the admixtures of various states are taken into account. Based on the studies, the impurity Er^{3+} is expected to occupy the octahedral Mg²⁺ site, associated with an oxygen ion substituting for one of the nearest F^{-} (i.e., O_F) in the C₄ axis, due to charge compensation. Because of the electrostatic attraction of the compensator O_F, the Er^{3+} ion is found to take an axial displacement $\Delta Z \approx 0.07$ Å) towards the compensator along the C₄ axis. The calculated g factors based on the above displacement ΔZ show reasonable agreement with the observed values.

 $© 2005 Elsevier B.V. All rights reserved.$

Keywords: Defects; Electron paramagnetic resonance (EPR); Crystal fields; Er^{3+} ; KMgF₃

1. Introduction

 $KMgF₃$ has been widely investigated due to the properties of dielectric characteristics, luminescence, green upconversion, laser action with proper dopants, and applications in fast position-sensitive registration systems $[1-5]$. Recently, this material doped with rare-earth ions (such as Er^{3+} , Ce^{3+}) has attracted extensive attentions because of thermoluminescence (TL), photoluminescence (PL), photoluminescence excitation (PLE), solid state laser and phosphors properties $[6-11]$. In general, these properties are relevant to local structures of doped rare-earth impurity ions. Since electron paramagnetic resonance (EPR) is a useful technique to study local structures of paramagnetic impurity centers in crystals, experiments have been carried out on Er^{3+} -doped KMgF₃ by means

of the EPR technique. Abraham et. al. [\[12\]](#page--1-0) found a tetragonal $Er³⁺$ center (as well as another two trigonal centers) in KMgF₃ and its g factors g_{ℓ} and g_{\perp} were also measured by EPR experiment. This tetragonal Er^{3+} center was attributed to the impurity Er^{3+} occupying the octahedral Mg^{2+} site, associated with one substitutional Q^{2-} ion at the original nearest F⁻ site (labeled as O_F) in the C_4 axis due to charge compensation [\[12\].](#page--1-0)

Until now, however, no theoretical studies have been made on the above g factors, and the local structure of this tetragonal $Er³⁺$ center has not been determined, either. In order to verify theoretically the local structure of the tetragonal Er^{3+} center in KMgF₃, which may be useful to understand the properties of this material, and to make satisfactory interpretation to its g factors, we investigate in this paper the local structure and the g factors for the tetragonal Er^{3+} center in $KMgF_3$ from the perturbation formulas of the g factors for a $4f¹¹$ ion in tetragonal symmetry. In these formulas, the contributions to the g factors arising from the second-order perturbation terms and the admixtures of various states are taken into account.

^{*} Corresponding author. Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

E-mail address: wushaoyi@netease.com (S.-Y. Wu).

⁰¹⁶⁷⁻⁵⁷⁷X/\$ - see front matter \odot 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.matlet.2005.03.052

2. Calculations

In general, rare earth ions (e.g., Ce^{3+} , Pr^{3+} , Eu^{2+}) preferentially substitute for K^+ in KMgF₃ [7,13–16], because they have similarly large radii (≈ 1.034 , 1.013 and 1.09 Å [\[17\]\)](#page--1-0) comparable with that $(\approx 1.33 \text{ Å}$ [\[17\]](#page--1-0)) of the replaced K^+ . For Er^{3+} , however, the ionic radius $(\approx 0.881 \text{ Å} [17])$ $(\approx 0.881 \text{ Å} [17])$ $(\approx 0.881 \text{ Å} [17])$ is much smaller and close to that $(\approx 0.66 \text{ Å } [17])$ $(\approx 0.66 \text{ Å } [17])$ $(\approx 0.66 \text{ Å } [17])$ of Mg²⁺. Thus, Er³⁺ can occupy both the dodecahedral K^+ and the octahedral Mg^{2+} sites and result in three different impurity centers, as pointed out in Ref. [\[12\].](#page--1-0) For the studied tetragonal center, $Er³⁺$ may locate on the octahedral Mg^{2+} site due to their similar size and charge, with the extra positive charge compensated by one nearestneighbouring substitutional O_F in the C_4 axis [\[12\].](#page--1-0) As a result, the tetragonal (C_{4V}) Er^{3+} center, i.e., $[ErF_5O]^{4-}$ cluster, is formed. Because of the negative effective charge of the compensator O_F in the C_4 axis, the impurity Er^{3+} may shift towards the compensator by an amount ΔZ along the C_4 axis due to the electrostatic attraction. Therefore, the local structure of the impurity center can be approximately described by the compensator O_F and the displacement ΔZ of the impurity Er^{3+} (see Fig. 1).

For an $Er^{3+}(4f^{11})$ ion in tetragonal (C_{4V}) crystal-fields, the ground state ${}^{4}I_{15/2}$ would be split into eight Kramers doublets [\[18,19\].](#page--1-0) The lowest doublet is Γ_6 or Γ_7 , corresponding to the average value \bar{g} [= $(g_{\frac{\pi}{2}} 2g_{\perp})/3$] of about 6 or 6.8, respectively [\[18,19\].](#page--1-0) From the observed \bar{g} $(\approx 6.469$ [\[12\]](#page--1-0)) for the tetragonal Er^{3+} center in KMgF₃, the lowest Kramers doublet should be Γ_7 . In the treatments of the previous works [\[18,19\],](#page--1-0) merely the first-order perturbation contributions to the g factors were taken into account. In this work, however, we also include the contributions to the g factors arising from the second-order perturbation terms, which originate from the admixtures between the lowest Γ_7 and the 14 irreducible representations $\Gamma_{\rm x}$ due to the tetragonal splitting of the ground ${}^{4}I_{15/2}$ and the first excited ${}^{4}I_{13/2}$ states via the crystal-field \hat{H}_{CF} and the orbital

Fig. 1. Local structure of the tetragonal Er^{3+} center in KMgF₃. The impurity $Er³⁺ occupying the octahedral Mg²⁺ site undergoes the axial displacement$ ΔZ towards the compensator O_F along the C₄ axis due to electrostatic attraction.

angular momentum \hat{J} interactions. Therefore, the perturbation formulas of the g factors for a $4f¹¹$ ion in tetragonal symmetry can be expressed as [\[20\]](#page--1-0)

$$
g_{//} = g_{//}^{(1)} + g_{//}^{(2)}, g_{//}^{(1)} = 2g_{J} < \Gamma \gamma |\hat{J}_{z}| \Gamma \gamma > , g_{//}^{(2)}
$$

=
$$
2 \sum_{x} \frac{<\Gamma \gamma |\hat{H}_{CF}| \Gamma_{x} \gamma_{x}> <\Gamma_{x} \gamma_{x} |\hat{J}_{z}| \Gamma \gamma >}{E(\Gamma_{x}) - E(\Gamma)},
$$
 (1)

$$
g_{\perp} = g_{\perp}^{(1)} + g_{\perp}^{(2)}, g_{\perp}^{(1)} = g_{J} < \Gamma \gamma |\hat{\mathbf{J}}_{+}| \Gamma \gamma' > , g_{\perp}^{(2)} = 0. \tag{2}
$$

Here $\Gamma \gamma^{(\gamma)}$ (y and y' stand for the two components of the Γ irreducible representation) is the basic function of the lowest doublet. g_J are the Lande factors for various $^{2S+1}L_J$ configurations, which were given in Refs. [\[18,19\]](#page--1-0) (note: the nondiagonal elements g_J ' may occur in the expansions of Eqs. (1) and (2) due to the interactions between different $^{2S+1}L_J$ configurations). The basic function $\Gamma\gamma^{(\gamma)}$ contains the admixtures of various states, i.e., the admixture between the ground ${}^{4}I_{15/2}$ and the excited ${}^{4}I_{13/2}$ states via \hat{H}_{CF} interaction, the admixture among ${}^2K_{15/2}$, ${}^2L_{15/2}$, and ${}^4I_{15/2}$ and that among ${}^{2}K$ ${}^{2}I$ and ${}^{4}I$ wie spin, orbit coupling interaction $K_{13/2}$, ${}^{2}I_{13/2}$ and ${}^{4}I_{13/2}$ via spin–orbit coupling interaction. Therefore, the formula of $\Gamma \gamma^{\gamma} \gamma$ may be written as [\[20\]](#page--1-0)

$$
|\Gamma \gamma^{(\gamma')} \rangle = \sum_{M_{J1}} C \Big({}^4I_{15/2} ; \Gamma \gamma^{(\gamma')} M_{J1} \Big) N_{15/2}
$$

$$
\times \Big(|{}^4I_{15/2} M_{J1} \rangle + \lambda_K |{}^2K_{15/2} M_{J1} \rangle
$$

$$
+ \lambda_L |{}^2L_{15/2} M_{J1} \rangle \Big) + \sum_{M_{J2}} C \tag{3}
$$

$$
\times \Big({}^4I_{13/2} ; \Gamma \gamma^{(\gamma')} M_{J2} \Big) N_{13/2} \Big(|{}^4I_{13/2} M_{J2} \rangle
$$

$$
+ \lambda_K' |{}^2K_{13/2} M_{J2} \rangle + \lambda_I |{}^2I_{13/2} M_{J2} \rangle \Big),
$$

where M_{J1} and M_{J2} are in the ranges of $-15/2$ to 15/2 and $-13/2$ to 13/2, respectively. The coefficients C $({}^4I_{15/2}; T\gamma^{(\gamma')}M_{J1})$ or $C({}^4I_{13/2}; T\gamma^{(\gamma')}M_{J2})$ can be determined by diagonalizing the 30×30 energy matrix including $^{4}I_{15/2}$ and ${}^{4}I_{13/2}$ states. λ_i and N_i are the mixing coefficients and the normalization factors. They can be determined from the spin – orbit coupling matrix elements and perturbation method.

The crystal-field interaction \hat{H}_{CF} in the above formulas can be written in terms of the Stevens equivalent operators in tetragonal (C_{4V}) symmetry [\[18,19\]:](#page--1-0)

$$
H_{CF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_6^0 O_6^0 + B_4^4 O_4^4 + B_6^4 O_6^4 \tag{4}
$$

The crystal-field parameters B_k^q ($k=2, 4, 6; |q| \le k$) are determined from the superposition model (SPM) [\[21\]](#page--1-0) and the local geometrical relationship of the studied impurity center, i.e.,

$$
B_{k}^{q} = \sum_{j=1} \overline{A}_{k} (L_{j}) K_{k}^{q} (\theta_{j}, \phi_{j}) (R_{0}/R_{j})^{t_{k}}.
$$
 (5)

The coordination factors K_k^q (θ_j , ϕ_j)can be calculated from the local structural data of the studied system Download English Version:

<https://daneshyari.com/en/article/1653839>

Download Persian Version:

<https://daneshyari.com/article/1653839>

[Daneshyari.com](https://daneshyari.com)