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Abstract

The conventional theory of constrained dendrite growth for binary alloys was extended to multicomponent alloys, taking into account the

solute interactions in each phase. These interactions influence not only the phase equilibria between liquid and solid but also the diffusion

behaviors. This is not possible for conventional methods that apply constant parameters, typically approximated from the corresponding

binary systems. Their influence on the kinetics of dendrite growth was demonstrated quantitatively in Cu–Sn–Zn ternary systems. The great

difference from the simulated results without solute interactions demonstrated its necessity of coupling thermodynamic databases in the

simulation of solidification process.
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1. Introduction

Dendrite structures are the predominant microstructural

constituents of solidified alloys. In 1947, Ivantsov had

already acquired the analytical solution of the steady state

solute field around the dendrite tip by assuming the interface

as a paraboloid. [1]. In the following decades, great

advances were made in developing the theories of con-

strained growth of columnar dendrites [2–5]. The theories

have primarily been applied to binary alloys, but some

approximation to multicomponent alloys was also presented

[6]. In multicomponent alloys, however, the composition

equilibria at the solid–liquid interface and the diffusion

matrix cannot be easily determined from the corresponding

binary systems. The conventional solution avoided this

difficulty by applying constant parameters, typically

approximated from corresponding binary systems. In this

case, the solute distributions in each phase and the

composition equilibria cannot be reliably predicted in the

simulation process.

In this paper, a convenient way to solve this problem is

developed by determining the phase equilibria and diffusion

matrix with a new method using thermodynamic databases

and the diffusion mobility coefficients. The calculation was

applied to Cu–Sn–Zn alloys as an example to compare this

method with the conventional models.

2. Theoretical model

2.1. Multicomponent thermodynamics

In the case of multicomponent alloys, the equilibrium

liquidus and solidus concentrations are defined by the tie-

line of phase diagram if the temperature is known. The

integral Gibbs energy for each phase depends on its

constitutions, temperature and pressure, and is described

by the thermodynamic models in the CALPHADmethod [7].

There are a large number of thermodynamic models for

various substances in different state, such as the Redlich–

Kister–Muggianu formalism for fcc, bcc and hcp solid

solution phases and the sublattice model for the description

of the phase with two or more sublattices. Such work is near

fruition, since there are now several available software
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systems capable of estimating the phase equilibrium as a

function of pressure, temperature and the chemical compo-

sition. The prediction of phase equilibrium between liquid

and solid and the phase diagram characteristic (i.e., the

liquidus slope and the freezing range) is easily accom-

plished by calling to Thermo-Calc through the TQ interface

[8]. In this software, the tie-line are calculated minimizing

the Gibbs free energy of the system with respected to

temperature, number and composition of phases and, if

relevant, to pressure.

2.2. The solute diffusion in multicomponent alloys

A more general representation of multicomponent

diffusion fluxes is given by [9]

Ji ¼ �
Xn�1

j¼1

Dn
ijlCj ð1Þ

where n is the number of components in the system and the

Dij
n are the multicomponent diffusion coefficients. The

subscript i and j refer to the solute i and j, respectively. The

summation in Eq. (1) is over only n�1 components

because the concentration of the nth component can always

be written in terms of a linear combination of the other n�1

components.

For the case that the elements are substitutional, the

diffusion coefficient defined in the volume-fixed frame of

reference, Dij
V, can be expressed as

DV
ij ¼

Xn
k¼1

dki � xið ÞxkXk

Blk

Bxj
ð2Þ

where xi is the mole fraction of component i, lk is the

chemical potential of component k, dki is the Kronecker delta,
i.e., dki =1 when i =k and 0 otherwise. It can be observed that
the quantity fllk/flxj is a purely thermodynamic parameter

and corresponds to the thermodynamic factor [10]. This

quantity can thus be evaluated from the thermodynamic

description of the system. The parameterXk is the mobility of

specie k in a given phase and will be discussed later.

The chemical diffusion coefficients, by eliminating the

concentration element n, can be deduced as

Dn
ij ¼ DV

ij � DV
in ð3Þ

where n is the solvent and Dij
V are given in Eq. (2). The

diffusivity Dij
n is the most convenient one for practical

calculations.

Determination of the diffusion mobility parameter in Eq.

(2) requires the use of experimental diffusion data. Tracer or

self diffusivities, Di
*, is generally determined from diffusion

studies using isotopes and directly related to the mobility Xk

by means of the Einstein relation

D4
i ¼ RTXi: ð4Þ

Using the diffusion coefficient expression in Eq. (3), the

concentration of element n is eliminated and an (n�1)�
(n�1) chemical diffusion matrix is obtained.

2.3. Dendritic growth in multicomponent alloys

During dendrite growth, solute will be piled up ahead of

the dendrite tips and the constitution undercooling may be

introduced. Under steady state, the composition field around

a dendrite tip is governed by the Ivantsov’s equations in

binary alloys. This can be extended to multicomponent

alloys with a linear combination of n�1 terms correspond-

ing to the binary solution [11]:

Ci gð Þ � CV
i

¼
Xn�1

j¼1

Fij

Z V

gPej

exp � uð Þ
u

du

�Z V

Pej

exp � uð Þ
u

du

#"
ð5Þ

where Ci
V is the concentration of solute i in the far field. The

dendrite tip interface can be described by g =1. The Peclet

number Pej is defined separately by each eigenvalue Bj of

the diffusion matrix Dn

Pej ¼
rV

2Bj

ð6Þ

where r is the dendrite tip radius and V is its growth

velocity. The coefficients Fij are the components of the

corresponding vectors Fj, which are related to the corre-

sponding unit length eigenvectors Nj of matrix Dn by

Fij ¼ �Fj�N ij ð7Þ
The magnitude of Fj, ||Fj|| is still to be determined.

The boundary condition along the solid–liquid interface

can be deduced from Eq. (5) as

rV

2
C4
i;L � C4

i;S

� �

¼
Xn�1

j¼1

Dij

Xn�1

k¼1

Fjk exp � Pekð Þ
�Z V

Pek

exp � uð Þ
u

du

�	

ð8Þ
where Ci,L

* and Ci,S
* are the concentrations of the liquid and

solid at the interface, respectively. Worth noting here is that

the phase equilibrium is determined with consideration of all

the solute interactions in each phase. This is not possible for

conventional methods that apply constant value partition

coefficients of solutes, typically approximated from binary

phase diagrams.

The interface composition is then given by Eq. (5) with

g =1

C4
i;L ¼ CV

i þ
Xn�1

j¼1

Fij: ð9Þ

Thus the coefficients Fij can be determined from Eqs.

(5)–(9). The concentration of the liquid at the interface CL
*
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