Contents lists available at ScienceDirect

Progress in Materials Science

journal homepage: www.elsevier.com/locate/pmatsci

Disconnections and other defects associated with twin interfaces

J.P. Hirth^a, J. Wang^{b,*}, C.N. Tomé^c

^a MPA-CINT, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

^b Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

^c MST-8, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

ARTICLE INFO

Article history: Received 20 April 2016 Received in revised form 27 June 2016 Accepted 15 July 2016 Available online 18 July 2016

Keywords: Interfacial defects Twinning Hexagonal metals

ABSTRACT

The general topological model for interfacial defects is reviewed and expanded, and the role of these defects in the coupled shear - migration of interfaces is explored. We focus on twinning in hexagonal metals for many defect examples. The definition of shuffles within the topological model is presented. The concept of partitioning of the rotational component of elastic distortions at a grain boundary or interphase interface has recently been elucidated. This work shows that rotational coherency has an important role in twinning. The role of disconnections in type II twins is presented.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	418 418 418 418 418 418 418 418 418 418	8
2.	Interf	ace types and the topological model	0
	2.1.	Interface types	0
	2.2.	The topological model	1
	2.3.	The Gibbs interface 424	4
3.	Interf	acial line-defects	5
	3.1.	Defect character	5
	3.2.	Terrace dislocations and disconnections 42	5
		3.2.1. Perfect defects	5
		3.2.2. Domain defects	6
		3.2.3. Imperfect defects	7
	3.3.	Terrace disclinations	7
	3.4.	Junction defects	8
		3.4.1. Junction line disclinations	8
		3.4.2. Junction line dislocations	0
	3.5.	Multiple height TDs	0
4.	Motic	on of unit disconnections	1
	4.1.	Preliminary remarks	1
	4.2.	Exchange cells	1
	4.3.	Effects associated with <i>p</i>	3

* Corresponding author.

E-mail address: jianwang@unl.edu (J. Wang).

http://dx.doi.org/10.1016/j.pmatsci.2016.07.003 0079-6425/© 2016 Elsevier Ltd. All rights reserved.

	4.4.	Thermodynamic driving force	434
	4.5.	The P/B interface	435
	4.6.	Arrays and motion of disconnections.	438
	4.7.	Combination of disconnections	439
5.	Facets	s and disclinations	439
6.	Twin	nucleation	442
	6.1.	Homogeneous nucleation	442
	6.2.	Heterogeneous nucleation	443
7.	Synch	ıroshear	445
8.	Intera	ction of matrix dislocation and twin terrace	446
9.	Incoh	erent boundaries and the plane of shear	447
10.	Twir	n intersections and duplex twinning	449
11.	Туре	ll twinning	451
12.	Mult	tiscale modelling of deformation twinning in <i>hcp</i> metals	454
	12.1.	Plastic deformation in <i>hcp</i>	454
	12.2.	Modelling twinning in crystal plasticity models	454
	12.3.	Modelling nucleation and propagation of twins	455
	12.4.	Models incorporating statistical variation	455
		12.4.1. Stochastic model for twin nucleation	456
		12.4.2. Stress associated with twin growth	457
13.	Disc	ussion	458
14.	Sum	mary	459
	Ackno	owledgments	460
Appe	endix /	A. The Pond topological theory of bicrystal crystallography	460
Appe	endix I	B. Topological analysis of single defects.	461
	B.1.	Burgers vector	461
	B.2.	Steps.	462
	B.3.	Imperfect and domain defects	463
	B.4.	Shuffles	464
	B.5.	Other defects	464
Appe	endix (C. Twin notation	464
Appe	endix I	D. Arrays of defects	465
Appe	endix I	E. List of abbreviations	466
	Refere	ences	466

1. Introduction

The principal objective of the present work is to discuss the structure of interfaces and mechanisms of interface motion within the Topological Model (TM) [1–5]. A list of such commonly used acronyms is given in Appendix E. The basis for the TM is the topological theory that describes the crystallography of bicrystal interfaces in terms of dichromatic patterns [1,2]. Here, we do not emphasize formal crystallography, briefly reviewed in Appendix A, but emphasize physical interpretations in the TM, developed in terms of circuits in Appendix B. We concentrate on interfaces which exhibit terrace – defect structures: coherent terraces have relatively low interfacial free energy, and any coherency strains arising are removed at longrange by superposed arrays of line-defects [6,7]. Under the constraint that coherency stresses are imposed on both crystals, the coherent terrace would be a singular interface corresponding to a cusp in a Gibbs-Wulff plot of interfacial free energy as a function of interface orientation. The presence of such a cusp is the key underlying criterion for the presence of terrace structures. The defects that relax the coherency strains are designated interfacial dislocations, or disconnections if they also exhibit step character [6,8]. Line defects with disclination character [9-13] can also be present, for example at junctions between interface facets [1]. The disclination structures, recently studied [14–16], have received little attention and are emphasized here. Interfacial dislocations have an important function in accommodating misfit at static interfaces, and in this role are typically referred to as "misfit" dislocations [17,18]. Disconnections can also fulfil this role. However, an additional function of disconnections is that motion along an interface produces both plastic deformation and interface migration simultaneously. The latter two functions are implicit in the mechanistic interpretation [19–22] of the Phenomenological Theory of Martensitic Crystallography (PTMC) [23–25], and the dual dislocation-step nature of the defects was qualitatively considered by several groups, as reviewed in [3]. The two functions were formally defined in the TM [4,5], see in particular Appendix A. Consequently, the TM is key in explaining displacive phase transformations and coupled shear-migration at grain boundaries [26]. Twinning is an important example of coupled motion [27–31], and, in this article, for examples, we focus on twinning in hexagonal close-packed (*hcp*) metals where twinning is a major deformation mode [32], although other interfaces are also mentioned. Additional extended twin defects with pure step character are also considered.

Twinning disconnections or twinning dislocations (TDs) and the role of shuffling in twinning are considered in the review by Christian and Mahajan [32]. The formal phenomenology of twins has also been reviewed recently in [33], as have the

Download English Version:

https://daneshyari.com/en/article/1655802

Download Persian Version:

https://daneshyari.com/article/1655802

Daneshyari.com