

Contents lists available at ScienceDirect

Progress in Materials Science

journal homepage: www.elsevier.com/locate/pmatsci

Electrophoretic deposition of graphene-related materials: A review of the fundamentals

Mani Diba ^{a,1}, Derrick W.H. Fam ^{b,1}, Aldo R. Boccaccini ^{c,d,*}, Milo S.P. Shaffer ^{b,c,*}

- ^a Department of Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
- ^b Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- ^c Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- ^d Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany

ARTICLE INFO

Article history: Received 12 November 2015 Received in revised form 25 February 2016 Accepted 15 March 2016 Available online 16 March 2016

Keywords: Electrophoretic deposition Graphene Graphene oxide Graphene related materials

ABSTRACT

The Electrophoretic Deposition (EPD) of graphene-related materials (GRMs) is an attractive strategy for a wide range of applications. This review paper provides an overview of the fundamentals and specific technical aspects of this approach, highlighting its advantages and limitations, in particular considering the issues that arise specifically from the behaviour and dimensionality of GRMs. Since obtaining a stable dispersion of charged particles is a pre-requisite for successful EPD, the strategies for suspending GRMs in different media are discussed, along with the resulting influence on the deposited film. Most importantly, the kinetics involved in the EPD of GRMs and the factors that cause deviation from linearity in Hamaker's Law are reviewed. Side reactions often influence both the efficiency of deposition and the nature of the deposited material; examples include the reduction of graphene oxide (GO) and related materials, as well as the decomposition of the suspension medium at high potentials. The microstructural characteristics of GRM deposits, including their degree of reduction and orientation, strongly influence their performance in their intended function. These factors will also determine, to a large extent, the commercial potential of this technique for applications involving GRMs, and are therefore discussed here.

© 2016 Elsevier Ltd. All rights reserved.

^{*} Corresponding authors at: Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom (M.S.P. Shaffer) and Institute of Biomaterials, University of Erlangen-Nuremberg, Germany (A.R. Boccaccini). E-mail addresses: aldo.boccaccini@ww.uni-erlangen.de (A.R. Boccaccini), m.shaffer@imperial.ac.uk (M.S.P. Shaffer).

¹ These authors contributed equally to this work.

Contents

1. Introduction				. 84
2.	GRM suspensions for EPD			. 88
	2.1.	Aqueou	s suspensions of GO-derived GRM for EPD	. 89
		2.1.1.	Oxidative chemical exfoliation	. 89
		2.1.2.	Structure and properties of GO	. 89
		2.1.3.	Chemical reduction of GO	. 89
		2.1.4.	Preparation of GO-based aqueous suspensions	. 90
	2.2.	Organio	suspensions of GRM for EPD	. 91
	2.3. GRM suspensions prepared with additives and chemical modifications			. 92
		2.3.1.	Additives	. 92
		2.3.2.	Chemical modification	. 93
3.	Kinetics involved in EPD of GRM			. 93
	3.1. Hamaker's law			. 93
	3.2.	Deviati	ons from Hamaker's law	. 95
	3.3.	Size dis	stribution of suspended graphene related materials	. 96
4.	Mech		f deposit formation	
5.	Side reactions			. 97
	5.1.	EPD-ba	sed reduction mechanism of GO	. 98
	5.2.	. Aqueous electrolysis		
	5.3.	Degradation of organic solvents		
	5.4.	Electrochemical reduction of additives		
6.	Microstructure			101
	6.1.	Typical	microstructural characteristics	101
		6.1.1.	Thickness	101
		6.1.2.	Porosity and bulk density	101
		6.1.3.	Wrinkles, surface roughness, and graphene edges	102
		6.1.4.	Conformability	103
	6.2.	Effects	of EPD parameters	104
		6.2.1.	Effects of voltage	104
		6.2.2.	Effects of deposition time	105
		6.2.3.	Effects of particle concentration	106
		6.2.4.	Effects of suspension pH	106
		6.2.5.	Effects of graphene functionalization and treatment	107
		6.2.6.	Effects of incorporation of other nanoparticles	108
		6.2.7.	Effects of post-EPD treatment	108
		6.2.8.	Other factors	108
	6.3.	EPD vs	other methods	109
7.	Discussion and outlook			109
	Acknowledgments			111
	Appendix A. Supplementary material			
	Refer	ences		111

1. Introduction

Graphene-related materials (GRMs), including graphene, few layered graphene (FLG), graphene oxide (GO) and reduced graphene oxide (rGO), are multifunctional nanostructured building blocks with extraordinary properties which may contribute to many fields of science and technology [1]. However, in order to exploit GRM properties for the production of functional devices, controlled processing methods are essential. Electrophoretic deposition (EPD) is an attractive technique for manipulation and deposition of nanomaterials, in general, and also for GRMs specifically. The process parameters can be easily manipulated to adjust the chemical and morphological conformation of the deposit with considerable flexibility [2,3]. EPD in its simplest form requires the application of

Download English Version:

https://daneshyari.com/en/article/1655818

Download Persian Version:

https://daneshyari.com/article/1655818

<u>Daneshyari.com</u>