#### Progress in Materials Science 81 (2016) 55-124



# Modeling concepts for intermetallic titanium aluminides



### F. Appel<sup>a</sup>, H. Clemens<sup>b</sup>, F.D. Fischer<sup>c,\*</sup>

<sup>a</sup> Institute of Materials Research, Helmholtz-Zentrum Geesthacht, D-21502 Geesthacht, Germany
<sup>b</sup> Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Austria
<sup>c</sup> Institute of Mechanics, Montanuniversität Leoben, Austria

#### ARTICLE INFO

Article history: Received 5 August 2015 Received in revised form 20 January 2016 Accepted 22 January 2016 Available online 21 February 2016

Keywords: Titanium aluminides Constitution Microstructures Deformation Dislocations Twinning Fracture Modeling Continuum mechanics Thermodynamics Deformation structures Deformation twins

#### ABSTRACT

Intermetallic titanium aluminide alloys based on the ordered face-centred tetragonal  $\gamma$ (TiAl)-phase represent a good example how fundamental and applied research along with industrial development can lead to a new and innovative class of advanced engineering materials. After almost three decades of intensive R&D activities  $\gamma$ (TiAl)-based alloys have matured from "laboratory curiosities" to novel structural light-weight materials which eventually found their applications in aerospace and automotive industries. Their advantage is mainly seen in low density (3.9-4.2 g/ cm<sup>3</sup>), high specific yield strength and stiffness, good oxidation and ignition resistance, combined with good creep properties up to high temperatures. Particularly at temperatures between 600 °C and 800 °C  $\gamma$ (TiAl)-based alloys are superior to Ti-based alloys in terms of their specific strength. Compared to the heavier Ni-based alloys below 800 °C, their specific yield strength is at least similar. Therefore, the particular constitution and extremely fine microstructure of these alloys are illustrated by several highresolution transmission electron micrographs. The mechanical properties seem to be largely affected by the evolution of internal stresses and off-stoichiometric deviations of the majority  $\gamma$ (TiAl)phase. Novel experimental approaches are described that could characterize the relevant deformation mechanisms. The combination of these results with the concepts of continuum mechanics and continuum thermodynamics has allowed developing models to describe thermomechanically controlled processes. A selection of such models is introduced and explained in a comprehensive way. While early modeling attempts were successfully undertaken to elucidate selected aspects of physical metallurgy of Ti-Al alloys,

\* Corresponding author.

E-mail address: mechanik@unileoben.ac.at (F.D. Fischer).

http://dx.doi.org/10.1016/j.pmatsci.2016.01.001 0079-6425/© 2016 Elsevier Ltd. All rights reserved.

many experimental findings, particularly for modern multi-phase alloys based on  $\gamma$ (TiAl) with rather complex constitution and microstructure are still waiting for explanation. © 2016 Elsevier Ltd. All rights reserved.

#### Contents

| 1. | Introduction                                      |                               |                                                                                                  | . 57       |
|----|---------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|------------|
|    | 1.1.                                              | Ti–Al a                       | alloys as structural materials                                                                   | . 57       |
|    |                                                   | 1.1.1.                        | A short summary                                                                                  | 57         |
|    |                                                   | 1.1.2.                        | Aspects of constitution and properties of $\gamma$ (TiAl)-based alloys as structural materials . | 59         |
|    |                                                   | 1.1.3.                        | Aspects of microstructure and heat treatments of $\gamma$ (TiAl)-based alloys as structural      |            |
|    |                                                   |                               | materials                                                                                        | 60         |
|    |                                                   | 1.1.4.                        | Applications of $\gamma$ (TiAl)-based alloys in jet engines and automotive engines               | 60         |
|    |                                                   | 1.1.5.                        | Some further remarks concerning $\gamma$ (TiAl)-based alloys as structural materials             | 61         |
|    | 1.2. Aspects of modeling of γ(TiAl)-based alloys  |                               |                                                                                                  | . 62       |
| 2. | Constitution and morphology of Ti–Al alloys       |                               |                                                                                                  | . 62       |
|    | 2.1.                                              | Crystal                       | llographic data of major constituents                                                            | . 62       |
|    | 2.2.                                              | Constit                       | tution and morphology of the lamellar microstructure                                             | . 62       |
| _  | 2.3. Constitution of the modulated microstructure |                               |                                                                                                  | . 67       |
| 3. | Deformation mechanisms                            |                               |                                                                                                  | . 68       |
|    | 3.1.                                              | Detorn                        | nation behaviour of multi-phase alloys                                                           | . 68       |
|    | 3.2.                                              | The de                        | formation mechanisms                                                                             | . 70       |
|    |                                                   | 3.2.1.                        | The elastic deformation state.                                                                   | 70         |
|    |                                                   | 3.2.2.                        | Dislocation core structures and glide in $\gamma(11A1)$                                          | /0         |
|    |                                                   | 3.2.3.                        | Dislocation glide in $\alpha_2(11_3\text{AI})$ .                                                 | /3         |
|    |                                                   | 3.2.4.                        | Distocation give in $\beta/\beta 2$ -phase                                                       | 73         |
|    |                                                   | 3.2.3.                        | Mechanical order twinning in $\gamma(11AI)$                                                      | 74         |
| 4  | Modeling concepts of Ti Al allows                 |                               |                                                                                                  | 70         |
| 4. | A 1 Metalphysical modeling                        |                               |                                                                                                  | . 70<br>78 |
|    | 4.1.                                              |                               | The concent of thermal and athermal stresses applied to v(TiAl)-based allows                     | . 78       |
|    |                                                   | 4.1.1.                        | Dislocation mobility                                                                             | 82         |
|    |                                                   | 4.1.2.                        | log dragging and work hardening                                                                  | 92         |
|    |                                                   | 414                           | Flow behaviour in reversed straining – the Bauschinger effect                                    | 95         |
|    |                                                   | 415                           | Fracture                                                                                         | 96         |
|    | 42                                                | Continuum-mechanical modeling |                                                                                                  | 100        |
|    |                                                   | 4.2.1.                        | An extended constitutive plasticity law                                                          | 100        |
|    |                                                   | 4.2.2.                        | Modeling of stress/strain curves of PST crystals and polycrystals                                | 102        |
|    |                                                   | 4.2.3.                        | Structural stability and conversion of the lamellar microstructure                               | 106        |
|    | 4.3.                                              | Therm                         | odynamical modeling                                                                              | 109        |
|    |                                                   | 4.3.1.                        | General aspects for modeling the developing microstructure                                       | 109        |
|    |                                                   | 4.3.2.                        | Modeling of the $\alpha(\alpha_2) \rightarrow \gamma$ transformation                             | 109        |
|    |                                                   | 4.3.3.                        | Modeling of the massive $\alpha \rightarrow \gamma_m$ transformation                             | 111        |
|    |                                                   | 4.3.4.                        | Modeling the $\beta \rightarrow \alpha$ transformation                                           | 113        |
|    |                                                   | 4.3.5.                        | Modeling of precipitation in $Ti_{1-x}Al_xN$                                                     | 113        |
|    |                                                   | 4.3.6.                        | Modeling of excess vacancy annihilation                                                          | 115        |
|    | 4.4.                                              | Combi                         | ned continuum-mechanical and thermodynamical modeling                                            | 116        |
|    |                                                   | 4.4.1.                        | General aspects of phase transformations                                                         | 116        |
|    |                                                   | 4.4.2.                        | Modeling the formation of deformation twins                                                      | 116        |
| 5. | Some                                              | Some final comments 1         |                                                                                                  |            |
|    | Acknowledgements                                  |                               |                                                                                                  | 120        |
|    | keterences                                        |                               |                                                                                                  |            |

Download English Version:

## https://daneshyari.com/en/article/1655881

Download Persian Version:

https://daneshyari.com/article/1655881

Daneshyari.com