

Contents lists available at ScienceDirect

Progress in Materials Science

journal homepage: www.elsevier.com/locate/pmatsci

Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes

D.A. Medvedev ^{a,b,*}, J.G. Lyagaeva ^a, E.V. Gorbova ^a, A.K. Demin ^{a,*}, P. Tsiakaras ^{a,c,*}

ARTICLE INFO

Article history: Received 27 June 2015 Accepted 4 August 2015 Available online 18 August 2015

Keywords: BaCeO₃ Perovskite Proton-conducting electrolytes SOFC Stability

ABSTRACT

The basic strategies of improving the stability of proton-conducting electrolytes based on barium cerate (BaCeO₃) by means of: (i) co-doping, (ii) doping by nonmetallic elements and (iii) composites development, are considered in the present review work. The reasons of the stability enhancement in these systems, as well as the correlation between stability and electrical conductivity are also presented and discussed. On the base of literature data comparative analysis, the electrolytes with sufficient phase structural, chemical, thermal stabilities and acceptable conductivity are identified.

© 2015 Elsevier Ltd. All rights reserved.

E-mail addresses: dmitrymedv@mail.ru (D.A. Medvedev), akdemin004@rambler.ru (A.K. Demin), tsiak@uth.gr (P. Tsiakaras).

^aLaboratory of Electrochemical Devices Based on Solid Oxide Proton Conductors, Institute of High Temperature Electrochemistry, 620137 Yekaterinburg, Russia

^b Ural Federal University, 620002 Yekaterinburg, Russia

^cLaboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece

^{*} Corresponding authors. Tel.: +7 (343) 362 32 63; fax: +7 (343) 374 59 92 (D.A. Medvedev). Tel.: +7 343 3745431; fax: +7 343 3745992 (A.K. Demin). Tel.: +30 24210 74065; fax: +30 24210 74050 (P. Tsiakaras).

Contents

1.	Introd	luction	39
2.	Double doping (co-doping) of BaCeO ₃		40
	2.1.	Ti-containing materials	41
	2.2.	In-containing materials	44
	2.3.	Nb-containing materials	47
	2.4.	Sn-containing materials	50
	2.5.	Ta- and Bi-containing materials	53
	2.6.	Systems based on BaCeO ₃ -BaZrO ₃	56
3. Doping of BaCeO ₃ by nonmetallic elem		g of BaCeO ₃ by nonmetallic elements	58
4.	BaCeC	O ₃ -based composite materials	61
5.	Other aspects of materials stability		68
	5.1.	Phase transitions and thermal stability	68
	5.2.	Ba-volatility	70
	5.3.	Chemical compatibility with other functional materials	72
6.	Conclusions		73
	Acknowledgements		73
	Refer	ences	73

1. Introduction

BaCeO₃ based oxides are the most widely and intensively studied materials as representative of the solid proton conductors' class [1–5]. The proton conductivity in such unique systems appears due to the interaction between water vapor and oxygen vacancies (the Kröger–Vink nomenclature is used here and further [6]):

$$V_0^{\circ} + H_2O + O_2^{\circ} \leftrightarrow 2OH_0^{\circ}. \tag{1}$$

The oxygen vacancies are generated within the structure by acceptor doping of the basic oxide:

$$R_2O_3 \xrightarrow{BaCeO_3} 2R_{Ce}^{/} + V_O^* + 2Ba_{Ra}^{x} + 5O_O^{x}, \tag{2}$$

$$RO \xrightarrow{BaCeO_3} R_{Ce}^{//} + V_O^* + Ba_{Ra}^x + 2O_O^x, \tag{3}$$

where R₂O₃ and RO are oxides of three- and bi-valent elements (for example, Y₂O₃, Gd₂O₃, In₂O₃, CaO). The presence of the proton conductivity, which is caused by OH_O defects along with the oxygen conductivity and defined by V_O, makes such co-ionic systems effective as functional materials for a number of electrochemical devices (solid oxide fuel cells (SOFC), electrolyzers, hydrogen and oxygen pumps, gas sensors, electrochemical reactors for ammonia synthesis, dehydration of alkanes, etc.) [7–9]. The application of co-ionic electrolytes in SOFC, for instance, is more effectively visibly compared with unipolar oxygen-ionic electrolytes (materials based on ZrO₂, CeO₂, (La,Sr)GaO₃, Bi₂O₃), as the conversion effectiveness of fuels' chemical energy into electricity is significantly higher [10–12].

For long time researchers have been seeking for the material with the highest proton conductivity. Thus, different groups of oxides with fluorite, braunmillerite, apatite, perovskite and some other structures were extensively studied. The perovskite structure (ABO₃) was found to be the most favorable, because it permits high concentration and mobility of proton defects [1–5].

Among investigated systems of scandates, hafnates, tantalates, indates, yttrates and zirconates of alkali-earth elements, materials based on barium cerate (BaCeO₃) exhibited the highest proton conductivity [1,2,4]. This may be explained from: (i) the structural perspective by the large ionic radius cation, which occupies A and B positions of ABO₃ perovskite, (ii) its relatively low electronegativity and (iii) from the microstructural perspective by the rather low grain-boundary resistance impact on the total resistance of ceramic samples.

Download English Version:

https://daneshyari.com/en/article/1656037

Download Persian Version:

https://daneshyari.com/article/1656037

Daneshyari.com