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A key parameter in discriminating the failure types of thermal barrier coatings (TBCs)was found out by using the
k-means cluster analysis of acoustic emission (AE) signals. It is shown that there are five classes of mechanisms,
including surface vertical cracks, opening interface cracks, sliding interface cracks, substrate deformation and
macroscopic cleavage or spallation. Except for the last one, the other four classes can be clearly distinguished
from their peak frequency distributions in the ranges of 170–250, 400–500, 260–350 and 40–150 kHz, respectively.
However, AE signals overlap with each other in other parameter spaces, e.g., amplitude, energy, rise time, and
duration time. The results indicate that the frequency can be applied to identify the AE source mechanisms in TBCs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As one of the most reliable methods for increasing the service
temperature of aeroengines, thermal barrier coatings (TBCs) have
been widely applied in vanes, turbine blades and combustors [1–3]. The
TBCs commonly comprise an insulated ceramic coating, an antioxidant
adhesive bond coating, and a substrate enduring mechanical loading.
Another oxide layer is formed between bond and top ceramic coating
due to high temperature exposure. However, each layer and its interfaces
have remarkably different physical, thermal and mechanical properties,
resulting in various levels of failure risk under the most extreme service
conditions. The complex shape and structure of the TBCs, along with
harsh operating conditions, make the prediction of their failure and
service life very difficult and even intractable [1,4]. To elucidate failure
mechanisms and assess their service reliability, therefore, it is desirable
to real-timely monitor the failure process of the TBCs.

Because of containing rich damage-related information such as
deformation and crack nucleation and propagation, acoustic emission
(AE) is a suitable tool to investigate the failure behavior of the TBCs.
As a typical non-stationary process, information on failure is difficult
to obtain by the AE waveform in a time space, so other parameters
(e.g., amplitude, energy, rise time, count and frequency) are commonly

extracted to qualitatively analyze failure mechanisms [5,6], to optimize
material compositions and preparation techniques [7,8], and to study
influence factors on mechanical properties [9,10]. We have also
developed a wave guide technique, by which AE can be used to monitor
failure of the TBCs under cyclic heating [11]. As a coating/substrate
system, there are various kinds of failure types in the TBCs, for example,
cracks in layers, delamination at interfaces and deformation in substrate
[10–12]. Therefore, the key problem to analyze the failure behavior of
the TBCs by using the AE method is how to discriminate these failure
types form their AE signals.

It is shown that, in a failure process with an identical measurement
condition, the AE signals associated with the same failure mechanism
are similar but those from different failure mechanisms are distinctly
different. Thus it is possible to discriminate the failure types via the
similarity analysis of AE signals. Berndt and Herman [13,14] investigated
the failure mechanisms of the plasma-sprayed TBCs by using the statisti-
cal evaluation of the AE spectra and found that the failure process can be
analyzed in terms of cumulative counts or a peak count rate. Ma and
Takemoto [6] studied the fracture behavior of the TBCs under four-point
bending and reported that the phases of longitudinal and transverse
waves in their time-domain waveforms can be used to identify the
crack type. However, our experiments showed that the frequency spectra
of the AE signals are strongly dependent on the fracture types of the TBCs
[9–12], which was also observed in composite materials [15] and
large-scale rupture such as volcano-induced seismicity [16]. Based
on the Fourier and wavelet transforms of the AE signals, four failure
mechanisms have been found in the TBCs under various kinds of loadings
[17]. The AE domain frequency fluctuating at 210 kHz corresponds to
surface vertical cracks generated by tensile stress in ceramic coating,
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290 kHz to sliding interface cracks produced by shear stress at ceramic/
bond coating interface, 430 kHz to opening interface cracks due to tensile
stress at the ceramic/bond coating interface, and 130 kHz to substrate
deformation. Based on the inverse processing of an AE signal, Pao
revealed that the time-domain AE features such as duration and
waveform are dependent on the failure type of a material [18]. Therefore,
it is necessary to extract a key parameter from the AE signals, which can
be applied to discriminate the failure types of the TBCs.

To find out such a key parameter, the cluster analysis based on
multivariate statistics has been performed to recognize the patterns of
AE signals. As one of the unsupervised pattern recognition methods,
the signals can be clustered according to their characteristics without
introducing any assumptions on the number or structure in advance
[15,19]. Choosing a parameter such as the similarity coefficient or
distance in a certain parameter space, the similarity between the signals
ismeasured and then separated from each other according to a criterion
in the space [15,19–22]. That is, there is not a limitation on the number
of failure types and reference signals in clustering, and theAE signals are
clustered or separated from each other according to their similarity or
difference. Thus, the type discrimination is strongly dependent on the
reasonability of a chosen parameter, which can be justified by the result
of a clustering analysis.

In this paper, the crack type discrimination of the TBCs and its
corresponding key parameter are investigated by clustering the AE
signals. The paper is organized as follows. In Section 2, the k-means
clustering method and its algorithm are introduced. The experimental
details such as the detection of the AE signals are described in Section 3.
Section 4 is dedicated to the clustering analysis on the AE signals recorded
from the TBCs under tension and compression. The results of the crack
typediscrimination andkey parameters are discussed in Section5. Finally,
a brief summary is given in Section 6.

2. The k-means clustering

Asmentioned, thewaveform, duration, peak frequency, and phase of
various kinds ofwave components can be used to discriminate the crack
types of the TBCs associatedwith different failuremechanisms. However,
it is unclear which parameter of the AE signals is representative enough
to be applied as a classifier. Therefore, a multivariate analysis of the AE
signals via the k-means clustering method is conducted to recognize
the crack type of the AE signals. The clustering process of the AE signals
is as follows. First, the AE signals are recorded from the failure process
of the TBCs under loading. Second, the AE parameters possibly related
to the failure mechanisms are extracted for clustering analysis. Then, a
parameter to measure the similarity of the AE signals is chosen and the
k-means clustering is carried out. Finally, the crack type of the AE signals
and the key parameter are analyzed according to the results of the
clustering analysis. Obviously, the selection of the AE parameters, the
definition of the similarity measure and the clustering algorithm are
emphases of the clustering analysis.

2.1. Selection of AE parameters

In the cluster analysis, the AE signals are treated as pattern vectors
that are difficult to describe by their non-stationary waveforms, and
thus, a number of AE parameters are extracted to characterize the
feature of the signals. AE is a release and transmission of elastic energy
produced by cracking or other activities. Accordingly, information on AE
activities such as length, number, and type of cracks can be reflected
through the parameters of AE signals. Commonly, AE counts and hits
reflect the number of cracks. Amplitude, effective or average voltage,
and energy are used to describe the strength of the AE signals, which
is associated with the length and/or type of cracks. Although there is
still a lack of a clear physical meaning, the duration and rise time are
important to the size and/or type of cracks [18]. The parameters in
a frequency space such as the peak frequency [10] and wavelet

energy coefficient [11,12] have also been proved to contain information
of crack types. However, some parameters are dependent, e.g., energy
depends on effective or average voltage and duration. To comprehensive-
ly reflect the information of crack types and extract independent param-
eters, five parameters are selected, including amplitude, peak frequency,
energy, rise time, and duration. Before clustering, these parameters with
different physical dimensions are normalized in the range of [−1, 1] to
construct the pattern vector and eliminate the physical dimension effect
on the classification. The mean variance normalization [15] is one of the
most commonly used methods in data standardization, and its principle
is to transform the data to a standard normal distribution with the
mean value of 0 and the standard deviation of 1. For a specimen with n
AE signals, the mean variance normalization for the i-th parameter can
be defined as

x0i ¼
xi−x
σ

ð1Þ

where xi and xi′ are original and standardizedparameters of theAE signals,
and x and σ are their mean and standard deviation, respectively.

2.2. Similarity measure

The similarity of samples should be determined before the partition
of theAE signals. Selecting an appropriate similaritymeasure is the basis
to guarantee the efficiency of the clustering analysis. Distance and sim-
ilarity coefficient are the two most commonly used metrics to measure
the similarity between signals and variables [19–23]. To measure the
similarity of the failure mechanisms between the AE signals, therefore,
the Euclidean distance is adopted and defined in a space with five
variables [22], that is

d2w Xl
;Xm

� �
¼

X5
j¼1

λ j Xl
j−Xm

j

� �2 ð2Þ

where λj is the j-th eigenvalue, Xj
l and Xj

m are the j-th coordinates of
the vectors Xl and Xm, respectively. The shorter the Euclidean
distance, the more similar are the signals in the space. Therefore,
for a given AE parameter that is appropriate to the failure type
classification, the clustering result can be obviously distinguished
from the distribution feature of the AE signals. The signals with the
same damage type should gather together in a dense region, and in
contrast, the signals from different damage types separate each other.

2.3. The k-means algorithm

Based on the k-means algorithm, n input vectors (X1, X2, …, Xn) or
signals are partitioned into k clusters with the centers of (C1, C2, …, Ck).
Using the nearest mean, each input vector is allocated to a cluster. Such
a clustering algorithm can be described as follows [15,19–23]:

1. Assume the number k of clusters and randomly initialize each cluster
center Cp, where p is from 1 to k.

2. Calculate the Euclidean distance between the vector and the centers
of the clusters and then assign each input vector (or pattern) to the
nearest cluster.

3. Recalculate the location of the cluster center according to the nearest
mean. Here it is worth noting that the distance of all input vectors
in the same cluster to this new center is minimized, which can be
expressed as

Xk

p¼1

X
xq∈Cp

Xq−Cp

���
���2→minimum: ð3Þ

4. Repeat steps 2 and 3 until there are no changes in these center
locations.
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