Accepted Manuscript

Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater

Lei Shan, Yongxin Wang, Jinlong Li, He Li, Xuedong Wu, Jianmin Chen

PII: S0257-8972(13)00297-1

DOI: doi: 10.1016/j.surfcoat.2013.03.034

Reference: SCT 18454

To appear in: Surface & Coatings Technology

Received date: 13 January 2013 Accepted date: 23 March 2013

Please cite this article as: Lei Shan, Yongxin Wang, Jinlong Li, He Li, Xuedong Wu, Jianmin Chen, Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater, *Surface & Coatings Technology* (2013), doi: 10.1016/j.surfcoat.2013.03.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater

Lei Shan^{a, b}, Yongxin Wang^a, Jinlong Li^a, He Li^a, Xuedong Wu^a, Jianmin Chen^a, *

^aNingbo Key Laboratory of Marine Protection Materials, Ningbo Institute of Materials

Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^b Department of Mechanical, Zhejiang Textile and Fashion College, Ningbo 315211, China

ABSTRACT

To improve the tribological performance of sea frictional components, TiN and TiCN coatings,

were used for surface protection of the components. The coatings were deposited on stainless

steel and WC cemented carbides by arc ion plating. The coating topography was observed

using scanning electron microscopy (SEM), the composition and structure were analyzed by

energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Hardness and adhesion

force were tested by nanoindentation and scratch tester, respectively. The friction and wear

properties of TiN and TiCN coatings were investigated by ball-on-disk tribometer in air,

distilled water and artificial seawater. The results showed that both TiCN and TiN coatings

had a strong (111) preferred orientation. The friction coefficients of coatings in distilled water

and artificial seawater were lower than those in air. This indicates the influence of aqueous

solutions on the friction coefficient due to the lubricative film formed on the coatings.

However, the wear loss of coatings in artificial seawater was larger than those in air and

distilled water, this demonstrates a positive synergism between corrosion and wear in artificial

seawater. The TiCN coating shows the best wear resistance in the artificial seawater.

* Corresponding author. Fax: + 86 574 86685159.

E-mail address: chenjm@licp.cas.cn.

1

Download English Version:

https://daneshyari.com/en/article/1658066

Download Persian Version:

https://daneshyari.com/article/1658066

Daneshyari.com