EI SEVIER

Contents lists available at SciVerse ScienceDirect

Surface & Coatings Technology

journal homepage: www.elsevier.com/locate/surfcoat

Two-phase single layer Al-O-N nanocomposite films with enhanced resistance to cracking

J. Musil*, R. Jílek, M. Meissner, T. Tölg, R. Čerstvý

Department of Physics, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, CZ-306 14 Plzeň, Czech Republic

ARTICLE INFO

Article history: Received 20 December 2011 Accepted in revised form 10 April 2012 Available online 20 April 2012

Keywords: Two-phase nanocomposites Oxynitride Al-based composites Mechanical properties Reactive sputtering Pulsed inlet of oxygen

ABSTRACT

The article reports on dc pulsed reactive sputtering of *two-phase single layer* Al-O-N nanocomposite films using dual magnetron in a mixture of $N_2 + O_2$ with pulsed inlet of oxygen. Two kinds of nanocomposite films were sputtered: (1) nc-AlN/a-(Al-O-N) film and (2) nc- $(\gamma$ -Al₂O₃)/a-(Al-O-N) nanocomposite film; here nc- and adenotes the nanocrystalline and amorphous phase, respectively. The transition from the nc-AlN/a-(Al-O-N) nanocomposite to the nc- $(\gamma$ -Al₂O₃)/a-(Al-O-N) nanocomposite was controlled by the length of the period of oxygen pulses T_{O2} . It was found that both nanocomposites are highly elastic films with relatively high hardness H=15 to 20 GPa, low effective Young's modulus E^* satisfying the condition that the ratio $H/E^*>0.1$, high elastic recovery $W_e>60\%$ and high resistance to cracking in bending. Correlations between the film structure and its mechanical properties are discussed in detail.

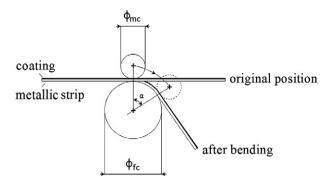
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

AlON is the aluminium oxynitride spinel ceramic material which exhibits technologically interesting physical properties, particularly optical, mechanical and thermal properties [1–7]. These properties of the Al-O-N material such as thermal, chemical and mechanical stability, refractive index, band-gap, transparency can be controlled and optimized by its elemental composition. Therefore, the Al-O-N material is successfully used in many applications, for instance, as transparent armor, military aircraft and missile domes, IR and laser windows, etc. The Al-O-N is produced not only as a bulk material [1,2] but also as thin films and coatings [3–7]. The Al-O-N thin films are used for optical applications, optoelectronic and microelectronic devices, the Al-O-N coatings as protective coatings against wear, diffusion and corrosion [3].

The Al-O-N material is a very complex system and not all correlations between the mechanical and optical properties and its elemental and phase composition were found. Our study is concentrated on a systematic investigation of the mechanical properties of the Al-O-N coatings only. For enhancement of the mechanical properties of the Al-O-N coating is very important in the relation between its hardness H and the effective Young's modulus E^* because the ratio H/ E^* makes it possible to assess a toughness of the coating by measurement of a resistance of the coating to cracking; here $E^* = E/(1-\nu^2)$, E is the Young's modulus and ν is the Poisson's ratio. A formation of hard coatings with enhanced toughness is now a new task in the

A simple way on how to increase the hardness H of the Al-O-N coating is to control its structure. Therefore, a main attention in our study was concentrated on the structure, hardness H, effective Young's modulus E^* , elastic recovery W_e of the Al-O-N coating and the relation between the ratio H/E^* and the cracking of the coating during bending. The Al-O-N coating is a two-phase nc-grains/a-matrix nanocomposite composed of nanocrystalline grains embedded in the amorphous matrix. H and E^* of the Al-O-N coating is determined by its structure which is controlled by the relative content of the nanocrystalline and amorphous phase.


This article reports on new single-layer nc-AlN/a-(Al-O-N) and nc-(γ -Al $_2O_3$)/a-(Al-O-N) two-phase composite thin films composed of either AlN or Al $_2O_3$ nanograins embedded in an X-ray amorphous (Al-O-N) matrix which were reactively sputtered by DC pulsed dual magnetron in a mixture of N $_2$ +O $_2$ gases. The main aim of this investigation is to determine the mechanical properties (the hardness H and the effective Young's modulus E^*) and mechanical behavior (the elastic recovery W_e and the ratio H/E*) of these nitride/oxide and oxide/oxide nanocomposite films and to find conditions under which the hard Al-O-N nanocomposite films resistant to cracking in bending can be formed.

2. Experimental

The Al-O-N films were reactively sputtered using a DC pulsed dual magnetron, operated in a bipolar mode and equipped with Al targets

development of new generation of hard coatings [8–12]. No such investigation was performed so far. Up to now, an attention was devoted mainly to the increase of H of the AlON material by its incorporation in nanomultilayers, e.g. ZrN/AlON [5], VN/AlON [6].

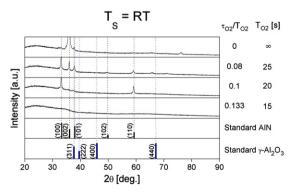

^{*} Corresponding author. E-mail address: musil@kfy.zcu.cz (J. Musil).

Fig. 1. (a) Schematic illustration of bending test used to create cracks in the film deposited on a metallic strip. \mathcal{O}_{mc} and \mathcal{O}_{fc} is the diameter of moving and fixed cylinder, respectively.

 $(\varnothing=50~\text{mm}),$ in a mixture N_2+O_2 gases. During the film deposition the nitrogen N_2 gas was introduced continuously and the O_2 gas in pulses into the deposition chamber. The pulsing of oxygen enabled to form AlN nanocrystals due to lower affinity of N to Al (the formation enthalpy of the AlN nitride $\Delta H_{AlN}=-318.6$ kJ/mol [13]) compared to that of O to Al $(\Delta H_{Al2O3}=-1678.2$ kJ/mol [13]). The AlN nanocrystals were embedded in the amorphous Al $_2O_3$ matrix and the nc-AlN/a-Al $_2O_3$ nitride/oxide nanocomposite film was formed.

The dual magnetron was supplied by an Advanced Energy pulsed power supply at a repetition frequency $f_r = 100$ kHz, the magnetron current $I_{da} = 3$ A averaged over the pulse period $T = 1/f_r$ and the duty cycle $\tau/T = 0.5$ in bipolar mode; here τ is the length of the magnetron pulse. The pumping speed v of the deposition chamber is approximately 33 l/s. The sputtering process was carried out as follows. At first, prior to the magnetron discharge ignition Ar gas was introduced in the deposition chamber at a flow rate ϕ_{Ar} = 20 sccm. Then, the discharge was started and held at the argon pressure $p_{Ar} = 1$ Pa. Then the argon was fully replaced with nitrogen and held at the pressure $p_{N2} = 1$ Pa with a flow rate ϕ_{N2} = 27 sccm. The oxygen was introduced in pulses with the oxygen pulse-on time τ_{02} = 2 s and the repetition frequency $f_{r~O2} = 1/T_{O2}$ increasing with increasing oxygen flow rate φ_{O2} from 0 (pure nitride film) to 5 sccm (pure oxide film); here T_{O2} is the period of oxygen pulses. The oxygen pulse-on time $\tau_{O2} = 2$ s was kept constant. Films were deposited on a floating substrate, i.e. at the substrate bias $U_s = U_{fl}$, two values of the substrate temperature $T_s = RT$ (unheated substrates) and $T_s = 500$ °C, the substrate-to-target distance $d_{s-t} =$ 100 mm and the partial pressure of nitrogen $p_{N2} = 1$ Pa; here U_{fl} is the floating potential and RT is the room temperature. The Si(100) plates $(20\times20\times0.3 \text{ mm}^3 \text{ for XRD measurements and } 30\times5\times0.3 \text{ mm}^3 \text{ for}$ the measurement of a macrostress σ in the film), microscopic glass $(25 \times 25 \times 1 \text{ mm}^3 \text{ for the measurement of an optical transparency})$ and Mo strips $(80 \times 15 \times 0.1 \text{ mm}^3 \text{ for the measurement of a resistance of the})$ film to cracking) were used as substrates.

The film thickness h was measured using a stylus profilometer DEKTAK 8. The film structure was characterized using an XRD spectrometer PANalytical X Pert PRO in Bragg-Brentano configuration with $CuK\alpha$ radiation. The elemental composition was determined by X-ray Fluorescence (XRF) spectroscopy with PANalytical XRF Spectrometer MagiX PRO. Mechanical properties were determined from load vs. displacement curves measured by a microhardness tester Fischerscope H100 with a Vicker's diamond indenter at a load L= 30 mN. The transparency of Al-O-N films was measured using a spectrometer Specord M400. The resistance of the film to cracking was investigated in a bending test. The principle of the bending test is shown in Fig. 1. The film was deposited on a Mo strip ($80 \times$ $15 \times 0.1 \text{ mm}^3$) and the coated strip was bended along a fixed cylinder of diameter \emptyset_{fc} up to angle α at which cracks in the film occurred. The bending of the coated strip was performed in a bending apparatus developed in our labs.

3. Results and discussion

3.1. Structure of sputtered films

3.1.1. Effect of substrate temperature

The structure of the Al-O-N film depends on the period T_{02} of oxygen pulses and the substrate temperature T_s used in the film sputtering, see Figs. 2 and 3. Fig. 2 compares the structure of Al-O-N films sputtered on unheated substrates ($U_s = RT$) and the substrates heated at $T_s = 500$ °C. The films deposited on heated substrates exhibit a lower crystallinity (lower intensities of X-ray reflections) compared to those deposited on the unheated substrate. It is due to a release of oxygen from the chamber walls heated by a hot substrate holder, enhanced dissociation of O2 on the surface of heated substrates, incorporation of more O into the film and by the formation of a higher amount of the a-Al₂O₃ phase in the film at $T_s = 500$ °C. Moreover, it is worthwhile to note that already a small amount of oxygen contained in a residual atmosphere of the deposition chamber after its evacuation to a base pressure po and/or evolved from the chamber walls at $T_s = 500$ °C is sufficient to react with sputtered Al. Therefore, a good reproducibility of properties of the Al-O-N films sputtered under the same conditions is difficult problem; the film properties are strongly influenced by the value of residual pressure p₀, i.e. by the efficiency and time of the evacuation of the deposition chamber, and the state of chamber walls prior to the film deposition. Therefore, a longer series with finer steps in T_{O2} was prepared to see better the evolution of the film structure, see Fig. 3.

3.1.2. Effect of duty cycle of oxygen pulses

The structure of the Al-O-N film strongly depends on a duty cycle of the oxygen pulses τ_{O2}/T_{O2} , i.e. on the amount of oxygen incorporated in the film. The films produced at $\tau_{O2}/T_{O2}=1$ (the deposition at continuous inlet of oxygen) are nc- $(\gamma-Al_2O_3)/a$ -(Al-O-N) composites.

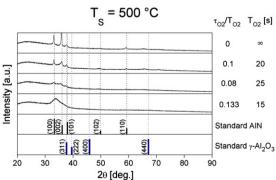


Fig. 2. XRD patterns of Al-O-N films sputtered on glass substrate as a function of repetition frequency of oxygen pulses $f_{r O2}$ at $\tau_{O2} = 2$ s and two values of the substrate temperature $T_s = RT$ (unheated substrate) and $T_s = 500$ °C.

Download English Version:

https://daneshyari.com/en/article/1658460

Download Persian Version:

https://daneshyari.com/article/1658460

<u>Daneshyari.com</u>