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The performance of data-drivenmodels relies heavily on the amount and quality of training samples, so it might
deteriorate significantly in the regions where samples are scarce. The objective of this paper is to develop an on-
line SVR model updating strategy to track the change in the process characteristics efficiently with affordable
computational burden. This is achieved by adding a new sample that violates the Karush–Kuhn–Tucker condi-
tions of the existing SVR model and by deleting the old sample that has the maximum distance with respect to
the newly added sample in feature space. The benefits offered by such an updating strategy are exploited to
develop an adaptive model-based control scheme, where model updating and control task perform alternately.
The effectiveness of the adaptive controller is demonstrated by simulation study on a continuous stirred tank
reactor. The results reveal that the adaptive MPC scheme outperforms its non-adaptive counterpart for large-
magnitude set point changes and variations in process parameters.
© 2014 Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

Model predictive control (MPC) has been widely accepted as an ad-
vanced control strategy in process industry owing to its ability to handle
complex control problems with constraints [1,2]. MPC uses a process
model to predict future process behavior and future control actions
are computed by minimizing a pre-specified cost function, so the effec-
tiveness of MPC relies heavily on the availability of a reasonably accu-
rate process model. Until recently, industrial applications of MPC have
mainly based on linear models due to their inherent simplicity from
conceptual and implementation points of view [1]. However, as many
chemical plants exhibit highly nonlinear behavior when operated over
a wide range, linear MPC often results in poor control performance,
which motivates its extension to nonlinear MPC, with a more accurate
nonlinear model used for prediction and optimization [3].

Among various nonlinear modeling methods, the support vector
regression (SVR) method has been widely applied in data-driven
modeling [4], since it not only shares many of its features with neural
networks but also possesses some additional desirable characteristics.

The advantage of SVR is that [4], for a givenmodeling problemwith a fi-
nite set of samples, it can automatically derive the optimal network
structure with respect to generalization error. Furthermore, current ex-
perience shows that SVRswork aswell as, and in some cases, better than
classical statistical approaches on noisy or imprecise data. Because of
these advantages, SVR has been found increasing applications in chem-
ical processes [5], especially when training data are insufficient or the
process has strong nonlinearity [6–8]. Nevertheless, a basic limitation
of all data-driven models is their inability to extrapolate accurately
once the information is outside the range of data used to generate the
model [9]. As the training samples available only describes a period
of process historical behavior andmight not represent complete charac-
teristics of true dynamics, the performance of the model may deterio-
rate substantially with time as a consequence of changes in the
dynamics of process [10–14]. Although the model can be retrained
from scratch when the training set is modified, it is cumbersome
and computationally inefficient. In this case, the accurate online SVR
(AOSVR) technique [15] seems to be a better alternative to SVR because
it uses an incremental algorithm, which updates SVR model efficiently
and accurately when a new sample is added to the training set without
retraining from scratch. Several model-based control schemes based on
AOSVR have been developed in recent years. Iplikci has proposed an
adaptive generalized predictive control (GPC) method by combining
SVR-based GPC approach with AOSVR [16]. An adaptive inverse control
algorithm, where SVR model is used to construct the inverse model of
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the process to be controlled online, has been studied [17]. More recent-
ly, AOSVR is employed to capture the abrupt and incremental faults in
the framework of SVR model based fault tolerance predictive control
scheme [18]. However, in these applications the AOSVR technique is
used without taking into account the differences among the newly in-
coming samples and lacking mechanisms to prune redundant samples
efficiently [10]. This may result in unreliable predictions and heavy
computation burden as the number of training data increases, limiting
the applications of recursive SVR algorithm to a long-term online
modeling and control task.

In our recent work, an efficient on-line model updating strategy
based on AOSVR has been developed and shown good performance
for predicting the melt index of an industrial polypropylene process
[19]. This strategy allows us to improve the estimation performance
with affordable computation burden by updating the existing SVR
model based on the novelty of new samples that arrive sequentially.
In this paper, the benefits offered by such an updating strategy are
further exploited to design an adaptive MPC controller. Several en-
hancements are also developed to make the model updating strategy
capture the current behavior of process more effectively. Specifically,
only those samples that violate the Karush–Kuhn–Tucker (KKT) condi-
tions of existing SVR model are added to improve the estimation accu-
racy for new operating region where samples may not be scarce or
nonexistent. As far as the accumulation of obsolete data is concerned,
the old training sample with the maximum distance to the newly
added sample in feature space will be recognized as the redundant
sample, which will be removed from training database subsequently
to enhance the estimation accuracy for the current behavior of process.
The effectiveness of the adaptive MPC controller is illustrated by a sim-
ulation study on a benchmark continuous stirred tank reactor (CSTR)
[20]. The adaptive MPC controller is able to achieve a smooth transition
for large magnitude set point changes and maintain the process at an
unstable operating point in the presence of unmeasured disturbances
and random noise.

2. On-line Support Vector Regression

Given a training set T= {(xi, yi), i= 1, 2,…, N}, where N is the total
number of training samples, xi∈ Rn is the n-dimension input vector, and
yi ∈ R is the output variable. In the feature space F, SVR builds a linear
regression function in the following form [4]

ŷ kð Þ ¼ w;Φ xið Þh i þ b ð1Þ

where w is a vector in F, Φ(⋅) is a mapping from the input space to the
feature space, b is the bias term, and 〈⋅, ⋅〉 stands for the inner product
operation in F. The SVR algorithms regard the regression problem as
an optimization problem in dual space with the model given by

ŷ kð Þ ¼
XN
j¼1

ajKij þ b ð2Þ

where aj is the coefficient of each sample and Kij denotes the kernel
function. Sample xj corresponding to a non-zero aj value is referred to
as the support vector (SV). By using Vapnik's ε-insensitive loss function,
the dual form of the optimization problem becomes a quadratic
programming (QP) problem

min
a;a�

Dε ¼
1
2

XN
i¼1

XN
j¼1

Kij ai−a�i
� �

aj−a�j
� �

þ ε
XN
i¼1

ai þ a�i
� �

−
XN
i¼1

yi ai−a�i
� � ð3Þ

subject to constraints

0≤ai; a
�
i ≤C;

XN
i¼1

ai−a�i
� � ¼ 0; i ¼ 1; ⋯;N ð4Þ

where ε is the maximum value of tolerable error and C is a regulariza-
tion parameter that represents a trade-off between model complexity
and effect of tolerance to the error larger than ε. The Lagrange formula-
tion of the QP problem can be further represented as

LD ¼ 1
2

XN
i¼1

XN
j¼1

Kij ai−a�i
� �

aj−a�j
� �

þ ε
XN
i¼1

ai þ a�i
� �

−
XN
i¼1

yi ai−a�i
� �

−
XN
i¼1

δiai þ δ�i a
�
i

� �þ ς
XN
i¼1

ai−a�i
� �þXN

i¼1

ξi ai−Cð Þ þ ξ�i a�i−C
� �� � ð5Þ

where δi, δi⁎, ς, ξi, ξi⁎ are the Lagrange multipliers. The KKT conditions of
Eq. (5) are

∂LD
∂ai

¼
XN
j¼1

Kij a j−a�j
� �

þ ε−yi−δi þ ς þ ξi ¼ 0

∂LD
∂a�i

¼ −
XN
j¼1

Kij a j−a�j
� �

þ ε þ yi−δ�i −ς þ ξ�i ¼ 0

δi; δ
�
i ≥0; δiai ¼ 0; δ�i a

�
i ¼ 0

ξi; ξ
�
i ≥0; ξi ai−Cð Þ ¼ 0; ξ�i a�i−C

� � ¼ 0:

ð6Þ

According to Eq. (6), at most one of ai and ai⁎ will be nonzero and
both are nonnegative. We define coefficient θi and margin function
h(xi) as

θi ¼ ai−a�i ð7Þ

h xið Þ≡ f xið Þ−yi ¼
XN
j¼1

Kijθ j þ b−yi: ð8Þ

Combining Eqs. (6)–(8), the KKT conditions can be rewritten as

h xið Þ≥ε; θi ¼ −C
h xið Þ ¼ ε; −Cbθib0

−ε≤h xið Þ≤ε; θi ¼ 0
h xið Þ ¼ −ε; 0bθibC
h xið Þ≤−ε; θi ¼ C:

8>>>><
>>>>:

ð9Þ

Based on Eq. (9), the training samples in T can be divided into three
subsets as follows [15]. Support set:

S ¼ ij θi∈ −C;0ð Þ∧h xið Þ ¼ εð Þ
∨ θi∈ 0;Cð Þ∧h xið Þ ¼ −εð Þ

� 	
:

Error set:

E ¼ ij θi ¼ −C∧h xið Þ≥εð Þ∨ θi ¼ C∧h xið Þ≤−εð Þf g:

Remaining set:

R ¼ ijθi ¼ 0∧ h xið Þj j≤εf g:

The AOSVR algorithm consists of incremental algorithm and decre-
mental algorithm [15]. The basic idea of incremental algorithm is to
find a way to add a new sample to one of the three sets maintaining
KKT conditions consistent. When a new sample xc is received, its corre-
sponding θc value is initially set to zero and then gradually changes
under the KKT conditions. The relationship between h(xi), Δθi and Δb
is given by

Δh xið Þ ¼
XN
j¼1

K ijΔθ j þ KicΔθc þ Δb: ð10Þ
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