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Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimi-
zation of furnaces could not only help to improve product quality but also benefit to reduce energy consumption
and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control (CMPC)
strategy, which, taking advantage of distributed model predictive control architectures, combines tracking
nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process
running smoothly and optimize operational conditions. The controllers connected with two kinds of communi-
cation networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm
combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reason-
able CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the
proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission
effectively.
© 2014 Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

Nowadays, oil energy becomes increasingly scarce and the amount
of greenhouse gas emissions is getting huge. Technological improve-
ments of control strategies for petroleum refining plants are recognized
as potentially effective solutions. Practically, heating various hydrocar-
bon compounds by burning fuels, tube furnaces consume a significant
amount of energy and generate huge exhaust emission. It is reported
that two ways are available to improve operational conditions of tube
furnaces. One is to maintain or replace old production facilities such as
using high efficient heat exchange systems, insulation walls and
burners, which is no doubt rather expensive and time consuming [1].
Another is to apply advanced control strategies, which can effectively
increase thermal efficiencies of furnaces by the optimization of opera-
tion condition.

Kalogirou [2] applied artificial intelligence methods in combustion
processes. Mercedes [3] introduced fuzzy cascade control to furnace
outlet temperature and achieved good results. Through experiments
and case study, Lee and Jou [4,5] presented numerical relationship of
flue gas residual oxygen concentration, air preheat temperature and
furnace thermal efficiency, pointing out that appropriate excess air
oxygen concentration and air preheat temperature can reduce fuel con-
sumption and pollution emissions. Lu et al. [6] proposed an intelligent
self-searching optimization algorithm for thermal efficiency, giving
satisfactory simulations. However, existing optimization methods
concerning the thermal efficiency of furnace are usually insensitive to

process disturbances, easily leading to malfunctions, or even causing
accidents, which discourage their applications.

Being capable of dealing with process dynamics and constraints for
multi-input andmulti-output systems, nonlinearmodel predictive con-
trol (NMPC) has beenwidely circulated in academia and industry [7–9].
Tracking nonlinear model predictive control (TNMPC) is commonly
used to formulate target tracking problems, in which the cost functions
are assumed to be positive definitewith respect to a certain set-point or
trajectory to be tracked. However, this basic assumption does not hold
for all cases, particularly for optimizing process economic objectives
[10]. In response, economic nonlinear model predictive control
(ENMPC) approaches have been developed, where generic cost func-
tions are used instead. TNMPC demonstrates good dynamic perfor-
mance and robustness in strongly nonlinear systems such as furnace,
but in the absence of optimization information in objective functions,
its applications are limited to the traditional two-layer control structure
(real-time optimization + model predictive control). In this context,
ENMPC is rather competent but suffers complex optimization models,
longer control cycles, and slow response to perturbations. Novel control
structures for both product qualities and economic objectives are
demanded.

Taking advantage of distributed model predictive control (DMPC),
communications between different NMPC strategies can be established.
Several DMPC methods [11–13] have been circulated in literature,
thoughmost relevant articles only highlight DMPC schemes conceptual-
ly. Motivated by these observations, this paper introduces a CMPC strat-
egy involving TNMPC and ENMPC based on rigorous nonlinear
mathematical models, which is easy to implement, enjoys good stability,
and optimizes quickly strongly nonlinear constrained complex systems.
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The CMPC strategy is compared with conventional control performance
through an industrial example.

2. Furnace Models

Furnaces are recognized as one of the most crucial facilities in
petrochemical plants, which heat hydrocarbon mixtures rapidly to a
desired temperature by the combustion of fuel gas or exhaust gas.
Fig. 1 shows a schematic of a vertical furnace with a radiation chamber
and a convection chamber.

To formulate generic first-principle dynamic models of furnaces, the
following assumptions are made.

(1) Flue gas and process variables distribute uniformly in the
chambers.

(2) The furnace is a multi-fuel (fuel gas and exhaust gas) burning
stove.

(3) Heat loss is negligible.
(4) Flue gas temperature in the convection chamber equals that in

the radiation chamber and distributes uniformly.
(5) The mole change of vapor during combustion is negligible.

Models for furnace temperature are based on the feed energy bal-
ance

C fρ fV f
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dt
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where ρf, Vf and Cf are the density, volume and specific heat of the feed in
tubes, respectively, ρfg, Vfg and Cfg are those of the flue gas in the cham-
ber, Ti,f, To,f, Tfg, and To,fg are the temperatures of feed at the inlet and out-
let, flue gas in the chamber, and flue gas at the outlet, respectively, Fg, Feg,
and Fo,fg are temperature–pressure compensated volumetric flow rates

of fuel gas, exhaust gas andflue gas at the outlet, respectively,U is the av-
erage heat transfer coefficient, A is the heat transfer area of furnace,QL

mf
represents the lowheating value ofmixed fuel, γ represents the combus-
tion rate of mixed fuel, and α is the excess air coefficient. Heat capacities
ρfVfCf and ρfgVfgCfg are adjusted by correcting factors to fit the real time
trend. The parameters are obtained by using equipment dimensions
and fitting to measurement data.

QL
mf ¼ Kg Fg þ Keg Feg ð4Þ

where Kg and Keg denote low heating value coefficients of fuel gas and
exhaust gas.

Dynamic characteristics of the fuel gas circuit is

τg
dFg
dt

¼ −Fg þ Fs;g ð5Þ

where τg is the time constant of fuel gas circuit, and Fs,g is the set-points
of Fg.

Models for furnace flue gas and air system are as follows

Cp
dP
dt

¼ Fa þ Fg þ Feg−Fo;fg ð6Þ

CO
dOfg

dt
¼ 21Fa−21Amf � Fmf−Fo;fgOfg ð7Þ

α ¼ 0:21Fa
Amf � Fmf

ð8Þ

where Cp and CO are the capacity factor of the chamber at negative
pressure and residual O2 of flue gas, respectively, P is the chamber neg-
ative pressure, Ofg is the residual O2 concentration of flue gas, Fa is the
volumetric flow rate of air, and Amf is the theoretical air–fuel ratio of
mixed fuel, which can be calculated as follows.

Amf ¼ FrgAg þ FregAeg ð9Þ

A f ¼ 2:381YH2
þ 2:381YCO þ 7:143YH2SX

mþ 0:25nð ÞYCmHn
−YO2

ð10Þ
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Fig. 1. A simplified schematic of furnaces.
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