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In this paper, asymmetric Gaussian weighting functions are introduced for the identification of linear parameter
varying systems by utilizing an input–output multi-model structure. It is not required to select operating points
with uniform spacing andmore flexibility is achieved. To verify the effectiveness of the proposed approach, sev-
eral weighting functions, including linear, Gaussian and asymmetric Gaussianweighting functions, are evaluated
and compared. It is demonstrated through simulations with a continuous stirred tank reactor model that the
proposed approach provides more satisfactory approximation.
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1. Introduction

Modern industrial processes are operated over a wide operating
range and often display strong static and dynamic nonlinearities.
The traditional linear models can no longer meet the requirement
formodel-based control. Accordingly,finding a sound and low cost non-
linear identification approach to approximate nonlinear processes over
a broad operating regime is crucial and indispensable [1].

In the identification of nonlinear systems, several black boxmodeling
approaches characterized by the usage of theoretically sound nonlinear
functions such as nonlinear AR(MA)X [2], artificial neural network
models [3], and blocked-oriented models such as Hammerstein and
Wiener models [4] have been studied. Since these models have complex
structure and need difficult computation, their applications to industrial
processes are limited.

Recently, linear parameter varying (LPV) model identification has
attracted great attention from academia and industry [5]. The terminol-
ogy of LPV was first introduced by Shamma and Athans [6] in the study
of gain scheduling control. The study on LPV systems has been extended
to the theory of linear systems [1]. Much work has been on the identifi-
cation of LPV systems [7,8]. LPV approaches are also applied to aero-
space systems including high performance aircraft, missiles and
turbofan engines [9].

Most available references on input–output LPV are based on param-
eter interpolation, assuming that the scheduling parameter varies con-
tinuously [10]. However, nonlinear functions are complex in the
denominator of transfer function,whichmay cause numerical problems
during model identification [10]. Besides, the input excitation signal for
this representation causes toomuch upset, whichmay be costly or even
unrealistic in practice [11]. To circumvent these difficulties, a multi-
model LPV model is proposed by interpolating local linear models
[10]. With local linear models and model interpolation philosophy, the
identification method is relatively simple and the stability of this LPV
models is guaranteed [12].

Essentially, proper weighting functions are required to combine
local linear models into a global LPV model in the multi-model LPV
structure. The available options are linear weight function [10] and
Gaussian weight function [12]. The linear weight functions can be
used conveniently, but it is not sufficient to capture the full dynamic
behavior of a nonlinear process. Owing to relative small number of
parameters and superior performance, Gaussian weighting functions
have been widely adopted in the multi-model structures [13] and
fuzzy sets [14]. A drawback of Gaussian weighting functions is that
the operating points for local linear models should have an equal dis-
tance, which limits their feasibility and causes large inconvenience
in applications.

To overcome the disadvantage of Gaussian weights, asymmetric
Gaussian weighting function is introduced for the identification of
multi-model LPV structure in this paper. The locations of operating
points can be selected freely. Linear, Gaussian and asymmetric Gaussian
functions are used and compared in simulation study of a continuous
stirred tank reactor (CSTR) system to demonstrate the accuracy and
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effectiveness of the multi-model LPV model with asymmetric Gaussian
weighting.

2. Description of LPV Model

For a multi-input single-output LPV system, let m inputs be {u1(t),
…, um(t)} at time t and the output be y(t). One type of the input–output
LPV system can be described as [1]

y tð Þ ¼
Xm
i¼1

Gi q;wð Þui tð Þ þ v tð Þ ð1Þ

where

Gi q;wð Þ ¼ Bi q;wð Þ
A q;wð Þ ¼

bi1 wð Þq−1 þ ⋯þ bin wð Þq−n
h i

q−di

1þ a1 wð Þq−1 þ ⋯þ an wð Þq−n ð2Þ

is a LPV transfer function from ui(t) to y(t) that is stable, Bi(q, w) and
A(q, w) are polynomials of q−1, which denotes unit delay operator, di
is the delay from the ith input to the output, v(t) is a stationary stochas-
tic process with zero mean and bounded variance, n is the order of the
model, and w(t) is the scheduling variable, which is measurable or
can be calculated from other measurable process variables. In this
paper, we assume that w(t) ∈ [wmin, wmax], where wmin and wmax are
the low and high limits of w(t), respectively.

Polynomial method is a commonly used parameterization method
to represent the LPV model, with parameters bji(w) and aj(w) replaced
by polynomial functions of w(t).

bij wð Þ ¼ γi; j
1 þ γi; j

2 wþ ⋯þ γi; j
nβ
wnβ−1

; j ¼ 1;…;n

aj wð Þ ¼ γ j
1 þ γ j

2wþ ⋯þ γ j
nα
wnα−1

; j ¼ 1;…;n
ð3Þ

where nα and nβ are the orders of polynomial functions.
Eqs. (1)–(3) formulate the common approach of current LPV

methods, called parameter-interpolation input–output LPV model [1].
However, it is not easy to identify parameter-interpolation LPV struc-
ture for its complex structure and fails to obtain acceptable performance
in a case study [12].

3. Multi-Model LPV Model Identification

Motivated by identification practice, Zhu and Xu [10] proposed a
simpler LPV model structure, which is called multi-model LPV model
by Huang et al. [12]. Its basic principle is to identify several local linear
models at fixed operating points, and then achieve the global model
by interpolation via certain weighting functions. It has been verified
[1,11,12] that themulti-model LPV is a good approximation of real pro-
cesses along its operating-trajectory and the stability of this LPV model
can be guaranteed easily [12].

We choose l operating points:

wmin≤w1bw2b⋯bwl≤wmax: ð4Þ

The choice of l is a trade-off of computing cost and model accuracy.
To identify the multi-model LPV model, local linear models at each

fixed operating point should be determined first. The transfer function
Ĝ
k
i qð Þ of the kth local linear models can be expressed as

Ĝ
k
i qð Þ ¼ Bk

i qð Þ
Ak
i qð Þ ¼

bi1 wkð Þq−1 þ ⋯þ bin wkð Þq−n
h i

q−di wkð Þ

1þ ai1 wkð Þq−1 þ ⋯þ ain wkð Þq−n
: ð5Þ

The parameters to be estimated for each local model can be written
as

θ̂ik ¼ ai1 wkð Þ⋯ain wkð Þ bi1 wkð Þ⋯bin wkð Þ di wkð Þ
h i

nþnþ1ð Þ�1
: ð6Þ

Parameters to be estimated for all l local linear models can be denot-
ed as

ΘL ¼ θ̂11⋯ θ̂
m
1 θ̂12⋯ θ̂

m
2 ⋯ θ̂

1
l ⋯ θ̂

m
l

h i
: ð7Þ

The values of all the parameters in ΘL can be obtained with linear
identifications using the data collected at each operating point test.
Several linear identification methods can be used: prediction error
method, subspace method and asymptotic method (ASYM) [15]. In an
operating point test, the scheduling variable is kept constant, while a
normal identification test is performed for local linear model identifica-
tion using small test signals.

Themulti-model global LPVmodel is obtained by interpolating local
linear models, which can be expressed as

ŷ tð Þ ¼
Xl
k¼1

ηk w tð Þð Þ
Xm
i¼1

Ĝ
k
i qð Þui tð Þ þ v tð Þ ð8Þ

where Ĝk
i qð Þ; i ¼ 1;2;…;m are the local linear models at the kth operat-

ing point, ηk(w(t)), k = 1, 2, …, l are the weighting functions of corre-
sponding local linear models, which are essentially static functions of
scheduling variable w(t), and v(t) is the white noise defined in Eq. (1).

To combine all the local linear models into a global multi-model LPV
model in Eq. (8), proper weighting functions are required for interpola-
tion,which have a large effect on the accuracy of the globalmodel. Some
common weighting functions are available in literature, such as linear
weight function [10] and Gaussian weight function [12]. The structures
of weighting functions will be specified later.

3.1. Multi-model LPV model with linear weights

The linear weight function is the simplest one that can be pre-
assigned. The weighting equals to the distance between current
scheduling variable and operating points of the local linear models.
With ŷ tjw tð Þð Þ to be estimated where wk b w(t) b wk + 1, (k = 1, 2, …,
l − 1), the weighted output ŷ tð Þ is

ŷ tð Þ ¼ wkþ1−w
wkþ1−wk

Xm
i¼1

Ĝ
k
i qð Þui tð Þ þ w−wk

wkþ1−wk

Xm
i¼1

Ĝ
kþ1
i qð Þui tð Þ: ð9Þ

Although linear weighting can be used conveniently in the multi-
model LPV model, it is not accurate enough to capture the full dynamic
behavior of nonlinear process.

3.2. Multi-model LPV model with Gaussian weights

A preferable choice for determiningmodel weights is Gaussian func-
tion, which can be written as

ηk w tð Þð Þ ¼ α̂k w tð Þð ÞXl
j¼1

α̂ j w tð Þð Þ
; k ¼ 1;2;…; l ð10Þ

where

α̂k w tð Þð Þ ¼ exp −1
2

w tð Þ−wk

σk

� �2� �
ð11Þ

and σk represents the width coefficient of the kth local linear model.
In the realm of multi-model structures [13] and fuzzy sets [14],

Gaussian weighting functions have been widely utilized, which have
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