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Time-series prediction is one of themajor methodologies used for fault prediction. The methods based on recur-
rent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping
ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series pre-
diction. However, the ill-posedness problem of reservoir neural networks has seriously restricted the generaliza-
tion performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved
reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function in-
volves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is intro-
duced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight
is effectively controlled and the ill-posedness problem is solved. Because the training speed of ordinary reservoir
networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and gen-
eralization ability. Experiments on Mackey–Glass and sunspot time series prediction prove the effectiveness of
the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some time-
series obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data.
The final prediction correct rate reaches 81%.
© 2014 Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

Fault detection and diagnosis have been studied for almost four de-
cades and become a significant part in control theory. The requirements
for system reliability and safety are increasing. It is crucial to know the
failure information before a fault. As a result, fault prediction has
attracted much attention.

The key of fault prediction is to forecast the future state of a system,
so fault prediction can be transformed to time-series prediction. The
existing methods of time-series prediction can be classified into three
categories. The first method is based on classical time series analysis,
consisting of ARMA model and ARIMA model [1]. The second method
is based on gray model [2,3] and the last one is based on neural net-
works [4–7]. Among these methods, the neural network method has
been studied deeply and applied to time-series extensively for its re-
markable non-linear mapping ability. In neural networks and machine
learning communities, several types of neural network model are
applied to time-series prediction such as the standard multilayer per-
ceptions [8], radial basis function neural networks [9–11], and

generalized regression neural networks [12]. In addition, recurrent neu-
ral networks [13] including nonlinear autoregressive network [14], ex-
treme learning machine networks [15], and recurrent predictor neural
networks [16] are also studied for nonlinear time-series prediction.

There are some limitationswhen applying neural networks to appli-
cations. For example, the performance is not good when the forward
neural network is applied to time-series prediction. Although recurrent
neural networks can solve the problems related to time-series, it has
many disadvantages such as large calculation, slow convergence rate
and difficulty in determining the number of hidden neuron. Moreover,
there are fading memories, which may make error gradient missing or
distorted.

To solve these problems, Jaeger and Maass proposed echo state net-
works (ESNs) [17] and liquid state machine [18], respectively. Although
these two methods have different angles, their essence is the improve-
ment of traditional recurrent neural networks. Verstraeten et al. have
demonstrated that the two methods are the same in essence and
named it reservoir computing [19]. Since the report of reservoir com-
puting on Science journal in 2004 [20], it has drawn a number of re-
searchers' attention around the world. Beside time-series prediction
[21,22], reservoir computing is extended to pattern classification [23],
voice recognition [24], image processing [25] and so on.

However, there are some problems in reservoir networks. In many
situations, the coefficient matrix for calculating the output weight is
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morbidly. To be specific, singular values distribute continuously with no
obvious jump. The maximum singular value and the minimum one dif-
fer significantly. Consequently, the output weight is extraordinary large
especially in the high-dimension reservoir networks. On the other hand,
the conventional way to control the output weight is choosing the res-
ervoirs with the dimension as low as possible, but the low-dimension
reservoir networks cannot bring good generalization ability.

In this paper, we first study the traditional structure of reservoir net-
works and analyze its ill-posedness problem. According to the analysis,
the structure risk is taken into consideration. A formula is obtained to
calculate the output weight with minimizing the loss function. This
method involves a regulating coefficient that can control the amplitude
of the output weight. The ill-posedness problem is solved in this way.
Experiments of two benchmark problems are used to verify the effec-
tiveness of the improved method. A fault prediction algorithm based
on the improved reservoir neural networks is proposed and applied to
TE process. Six time-series data consisting of 2 variables from 3 faults
are predicted. In the classification stage, we take advantage of static
reservoir networks to predict the type of the faults.

2. Reservoir Computing

2.1. Structure of reservoir network

The architecture of traditional reservoirs [17] is shown in Fig. 1.
Some terminologies must be fixed first. We consider discrete-time neu-
ral networks with K input units, N internal network units and L output
units. Activations of input units at time step n are u(n) = (u1(n), …,
uM(n)), those of internal units are x(n) = (x1(n), …, xN(n)), and those
of output units are y(n) = (y1(n), …, yL(n)). Real-valued connection
weights are collected in a N × K weight matrix W in = (wij

in) for the
input weights, in an N × N matrix W = (wij) for the internal connec-
tions, in an L × (K + N + L) matrix Wout = (wij

out) for the connection
to the output units, and in a N × L matrixWback = (wij

back) for the con-
nections that project back from the output to the internal units.

2.2. Mathematical model

In most cases the output has little effect on internal unit, so we will
not study parameter Wback. The equations of the reservoir networks
[17] can be written as

x kð Þ ¼ f W � x k−1ð Þ þW in � u kð Þ þ bx
� �

y kð Þ ¼ W outx kð Þ þ b:
ð1Þ

Considering Eq. (1), we assume that the internal state variables x
have N dimensions, input variables u have M dimensions, and output
variables y have L dimensions. To simplify the expressions, we consider
bias variables as the connection weight of output fixed value of 1. Thus

bx and b can bemerged intomatricesW in andWout. The active function f
can be spiking neurons, threshold logic neurons, sigmoid neurons, line-
ar neurons and so on. In this paper, sigmoid function is taken. We first
initialize the networks:W andW in are generated randomly and remain
unchanged during the calculation, and the original state of internal unit
is zero, that is, x(0) = 0. The input and output of training samples are
u(k) and y(k), respectively. Thus we can calculate Wout with Eq. (1).

Some important points on reservoir networks are presented as follows.
First, the dimension of internal state units x is very high, up to hun-

dred even thousand, while it is relatively lower in the traditional recur-
rent neural networks.

Second, weightmatricesW in andW are randomly generated and re-
main unchanged during all training processes.

Last, as one of themeasuresmaintaining the dynamic characteristics
of reservoirs, the connection weight matrix of internal state is sparse to
the point of 2%–5%, different frommost traditional recurrent neural net-
works, which always keep dense connection.

3. Improved Method

In this section, the ill-posedness problems of reservoirs networks are
discussed and the improvedmethod solving the ill-posedness problems
will be given.

3.1. Training

In order to facilitate the study, we redraw a new picture of the net-
work structure in Fig. 2, which is essentially the same as the structure
in Fig. 1, with the same neuron of reservoir in different moments. W in

is the connection weight between the input layer and the reservoir, W
is the interval connection weight, and Wout is the connection weight
between the output layer and the reservoir.

Training the reservoir networks can be summarized as determining
the connection weight matrix Wout between the output layer and the
dynamic reservoir layer. The following are the detailed steps of building
and training a reservoir network.

Step 1 Set the parameters of reservoir networks. Set the number of
internal units of reservoirs (N), the sparsity, and the spectral
radius of the connection weight matrix of internal state.
Initialize the reservoir network. The spectral radius of the
connection weight matrix of internal state is always between
0 and 1, but it is not a necessary condition. Sometimes the
spectral radius greater than 1 can give better prediction
performance.

Step 2 Calculate the interval state. Normalize the input sample and
stimulate the internal state of reservoirs using the normalized

Fig. 1. The basic structure of reservoir networks. Fig. 2. The simplified model of reservoir.
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