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Complex industrial processes often havemultiple operating modes and present time-varying behavior. The data
in one mode may follow specific Gaussian or non-Gaussian distributions. In this paper, a numerically efficient
movingwindow local outlier probability algorithm is proposed. Its key feature is the capability to handle complex
data distributions and incursive operating condition changes including slow dynamic variations and instant
mode shifts. First, a two-step adaption approach is introduced and some designed updating rules are applied
to keep the monitoring model up-to-date. Then, a semi-supervised monitoring strategy is developed with an
updating switch rule to deal with mode changes. Based on local probability models, the algorithm has a superior
ability in detecting faulty conditions and fast adapting to slow variations and new operating modes. Finally, the
utility of the proposed method is demonstrated with a numerical example and a non-isothermal continuous
stirred tank reactor.
© 2014 Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

In industrial processes, operating conditions are usually affected by
some slow variations denoted as time-varying characteristics,
caused by some dynamic behavior such as seasonal fluctuation,
catalyst deactivation, equipment aging, sensor or process drifting,
preventive maintenance and cleaning [1]. Generally, effects of
the time-varying behavior on the mean and covariance of vari-
ables cannot be neglected, so there may be many false alarms if
conventional multivariate statistical process monitoring (MSPM)
methods are applied directly [2]. In order to maintain process ef-
ficiency for a long period of time, numerous adaptive methods
have been developed. Recursive MSPM methods and methods
based on the moving window strategy are two alternative widely
used approaches [3,4].

Multimodality is another important feature of industrial process-
es due to changes of market demands, alternations of feedstock or
variations of manufacturing strategy. The difference between the
characteristics of nearby operating conditions is always significant,
so intensive studies have been carried out with either multiple
local models or a single global model [5,6]. While it is more practical

to accommodate the time-varying behavior and multimode features
together. The developed methods can be divided into two categories.
One is the adaptive clustering methods. Teppola et al. [7] applied
adaptive fuzzy C-means algorithms on the score values of principle
component analysis (PCA) to monitor a wastewater treatment
plant. Liu [8] used an adaptive Takagi-Sugeno fuzzy model on PCA
subspace to model a large scale nonlinear system containing many
operating regions. Since PCA is used as a preprocessing tool, moni-
toring results of these two methods more or less depend on and be
restricted by the capability of PCA. Petković et al. [9] designed an
on-line adaptive clustering method utilizing a generalized informa-
tion potential. Although previously unseen functioning modes can
be included by introducing an adaptive expert system, the method
suffers from a non negligible detection delay. The other category is
adaptive statistical methods. Improved recursive algorithms based
on recursive PCA or the signed digraph were proposed with some
if-then rules to distinguish process condition changes from distur-
bances [10–12]. Ge and Song [13] introduced the just-in-time-
learning strategy to the modeling procedure of local least squares
support vector regression and the residuals between the real output
and the predicted one was analyzed by a two-step information ex-
traction strategy. Xie and Shi [14] and Yu [15] developed two differ-
ent dynamic fashions of Gaussian mixture model (GMM) separately
based on the moving window strategy and a particle filter re-
sampling method.

The problem of complex data distributions in time-varying andmul-
timode processes has scarcely been addressed. Although the moving
window strategy has been proven to be effective, it still encounters
some limitations when incorporated with statistical methods such as
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PCA, partial least squares (PLS) or GMM. Since the variables of an indus-
trial process may satisfy specified Gaussian or non-Gaussian distribu-
tions, and high order statistics are usually helpful to reveal more
information from the data [16–18], adaptive monitoring algorithms
should be developed, which can explore both Gaussianity and non-
Gaussianity of process data. Local outlier probability (LoOP) is an unsu-
pervised data mining technique proposed for outlier detection [19]. It
combines the idea of local, density-based outlier scoringwith a probabi-
listic, statistically-oriented approach, and assigns the probability of
being an outlier to all data records. Since a normalization procedure
is included, LoOP is independent of any specific data distribution.
Therefore, a combination of LoOP and moving window strategy should
be potential to tackle these problems.

The main contribution of this paper is to propose a numerically
efficient moving window LoOP algorithm for monitoring industrial
processes with complex data distributions, time-varying property
and multiple operating modes. Some designed rules are introduced
and incorporated with a two-step adaption approach to ensure that
the monitoring model can be updated at a high speed. To cope with
the multimode features, a semi-supervised monitoring strategy is
employed, and an update termination rule is developed to prevent
the monitoring model contaminated by faults or disturbances.
Since the method is based on local probabilistic models, the accuracy
of model is higher and it will be much easier to detect faulty
conditions.

2. Adaptive Process Monitoring Based on Moving Window Loop

For low computation burden and practical applications, it is fast and
reasonable to only update the information of those samples whose
neighbors have changed due to the insertion and discard of samples.
The key problems addressed in this section are how to find the affected
samples and how to update their information.

2.1. Offline initialization

To make an initialization and calculate the LoOP value for each
sample xj (j = 1, 2, …, L) with dimension D in the initial window W1,
its k nearest neighbors are found as follows, with its neighborhood set
in W1 can be recognized as knn1(xj).

d x j; xp
� �
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Assuming that samples in knn1(xj) are centered around xj, then we
can define probabilistic set distance as:

pdist1 x j
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r
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where λ is a weighted factor usually taken as 2. For estimating the den-
sity around xj, the probabilistic local outlier factor (PLOF) is defined as
follows with function E(.) used to compute the expectation of PLOF in
the current window.

PLOF1 x j

� �
¼ pdist1 x j

� �
= Exp∈knn1 x jð Þ pdist1 xp

� �h i� �
−1 ð3Þ

To achieve normalization, the aggregate value nPLOF1 which can be
considered as a standard deviation of PLOF values is obtained:

nPLOF1 ¼ λ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E PLOF1ð Þ2� �q

ð4Þ

Finally, by applying the Gaussian error function, the local outlier
probability indicating the probability that a sample is an outlier can be
calculated as:

LoOP1 x j

� �
¼ max 0; erf PLOF1 x j

� �. ffiffiffi
2

p
� nPLOF1

� �� �n o
ð5Þ

where erf(.) is the Gaussian error function applied to obtain a probabi-
listic value.

2.2. Online updating and process monitoring

By applying the moving window strategy, a two-step adaption
procedure is introduced to update the monitoring model. Some more
details of the adaption procedure for a window size L are as follows.

Step 1: discard
The effect of eliminating the oldest sample xi from the previous
window Wi on the mean and variance can be evaluated as follows.

eμ ¼ Lμi−xið Þ= L−1ð Þ ð6Þ

Δeμ ¼ μi − eμ ð7Þ

eσ mð Þ2 ¼ 1
L−2ð L−1ð Þ � σi mð Þ½ �2− Δ eμ mð Þ� �2� �

− xi mð Þ−μi mð Þ½ �2
�

m ¼ 1;2…;Dð Þ
ð8Þ

eΣ ¼ diag eσ 1ð Þ; eσ 2ð Þ; ⋯; eσ Dð Þ� � ð9Þ

where diag(.) is the function used to calculate the diagonal matrix.
Eq. (6) describes the updating of the variable mean while
Eqs. (7)–(9) describe the updating of the variable variance.
After moving all the information about xi from the current monitor-
ing model, a set Si−1

0 (i N 1) is constructed to store the samples, in
which xi is one of their k nearest neighbors.

S0i−1 ¼ S0i−1∪ x j

n o
; if i≠ j; x j ∈W i and xi∈ knni x j

� �
ð10Þ

where knni(xj) represents the neighborhood set of sample xj in
window Wi. Obviously, if xj ∈ Si−1

0 , due to the deletion of xi, the
neighborhood set knni(xj) will change.
Step 2: insertion
When a new sample xi+ L is judged normal and added into the
data matrix, the updated mean vector and variance in Wi+1 are
computed as follows.

μiþ1 ¼ L−1ð Þeμ þ xiþL

� �
=L ð11Þ

Δμiþ1 ¼ μiþ1− eμ ð12Þ

σiþ1 mð Þ2 ¼ 1
L−1

�
L− 2ð Þ � eσ mð Þ� �2 þ L− 1ð Þ � Δμiþ1 mð Þ� �2

þ xiþL mð Þ− μiþ1 mð Þ� �2� m ¼ 1;2…;Dð Þ ð13Þ

Σiþ1 ¼ diag σiþ1 1ð Þ;σiþ1 2ð Þ; ⋯;σiþ1 Dð Þ� � ð14Þ

Eq. (11) describes the updating of the mean vector while
Eqs. (12)–(14) describe the updating of the variance. However,
only for those with new sample xi+ L among their k nearest
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