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a b s t r a c t

This paper extends a previous theoretical study (Sabelnikov and Lipatnikov, 2013) of the influence of
countergradient transport (CGT) on the speed of a statistically stationary, planar, 1D premixed flame that
passively propagates in homogenous turbulence in the form of a traveling wave, i.e. retains its mean
thickness and structure. While two particular models of the mean rate of product creation were
addressed in the previous article, with the shape of the rate as a function of the Favre-averaged combus-
tion progress variable being concave in both cases, the present paper deals with a more general model
that subsumes both concave functions and functions with an inflection point, i.e. a point where the func-
tion changes from being concave to convex or vice versa. In this more general case, transition from pulled
(flame speed is controlled by processes localized to the flame leading edge) to pushed (flame speed is
controlled by processes within the entire flame brush) flames can occur both due to interplay of the non-
linear reaction term and a nonlinear convection term associated with CGT and due to the change of the
shape of the reaction term in the absence of CGT. Explicit pushed traveling wave solutions to the studied
problem are theoretically derived and conditions under that developing flames approach either pushed or
pulled traveling wave solution are obtained by analyzing the governing equations at the flame leading
edge and invoking the steepness selection criterion which highlights traveling wave with the steepest
profile at the leading edge. Other analytical results include conditions for transition from pulled to
pushed premixed turbulent flames, dependence of flame speed on the magnitude of the CGT term and
the shape of the mean reaction rate, analytical expressions for the mean thickness of the pushed flames
and turbulent scalar flux within the pushed flames. All these theoretical findings are validated by results
of unsteady numerical simulations of the initial boundary value problem with steep initial wave profiles.

� 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Due to extreme complexity of various highly nonlinear and
multiscale phenomena associated with premixed turbulent com-
bustion, its theoretical analysis is commonly simplified to a study
of propagation of a statistically stationary, planar, 1D premixed
flame in homogeneous turbulence which is not affected by the
flame. Moreover, in such theoretical studies, the state of the mix-
ture is often characterized with a single scalar variable c called
combustion progress variable (c = 0 and c = 1 in unburned mixture
and combustion products, respectively) and the flame propagation
is modeled with a single balance equation [1]
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which involves two unclosed terms; turbulent scalar flux Ft ¼ qu00c00

and the mean mass rate W of product creation. Here, t is the time, x
and u are a spatial coordinate and the flow velocity, respectively, q
is the gas density, ~q ¼ qq=�q and q00 ¼ q� ~q designate the Favre-av-
eraged and fluctuating quantities, respectively, with the Reynolds
averages being denoted with over-bars, e.g. �q.

If the turbulent scalar flux in Eq. (1) is closed by invoking the
gradient transport (GT) approximation

Ft ¼ qu00c00 ¼ ��qDt
@~c
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; ð2Þ

where Dt > 0 is a turbulent diffusion coefficient, then, Eq. (1)
belongs to a wide class of partial differential equations, which are
called convection–diffusion–reaction (CDR) equations. Such
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equations are widely studied in various fields of science starting
from the pioneering work by Fisher [2] and Kolmogorov et al. [3]
who developed the well-known KPP theory of such equations.

More precisely, Kolmogorov et al. [3] considered a diffusion–re-
action (DR) equation, which results from Eqs. (1) and (2) in the case
of ~u ¼ 0, a constant Dt, and a constant density. They also assumed a
concave, i.e. W½ð~c1 þ ~c2Þ=2� > ½Wð~c1Þ þWð~c2Þ�=2 for any 0 6 ~c1 <
~c2 6 1, ‘‘hump’’-like shape of the source term in the DR equation,
i.e. Wð~cÞ in Eq. (1), with the highest slope dW=d~c being reached
at ~c ¼ 0. Moreover, Wð0Þ ¼Wð1Þ ¼ 0 and Wð~cÞ > 0 if 0 < ~c < 1.
Logistic expression ~cð1� ~cÞ and term ~c � ~cq with q > 1 are well-
known simple examples of such a concave source term multiplied
with a proper time scale. Kolmogorov et al. [3] sought for perma-
nent monotonous traveling wave (TW) solutions ~cðx; tÞ ¼ ~cðXÞ,
where X = x + u0t, to the studied DR equation with the boundary
conditions of ~cð�1Þ ¼ 0 and ~cðþ1Þ ¼ 1. Such a TW solution satis-
fies the following ordinary differential equation (ODE)

u0
d~c
dX
¼ Dt

d2~c

dX2 þWð~cÞ; ð3Þ

retains its shape ~cðXÞ, and moves at a constant speed u0.
Kolmogorov et al. [3] have analytically solved this nonlinear
boundary value problem (BVP) and have proved that it does not
have a unique solution, i.e. there is a family of TW solutions and
a continuous spectrum of eigenvalues, i.e. the TW speeds u0,

bounded with a minimum (slowest) speed u0;KPP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DtW 0ð0Þ

q
where W 0ð~cÞ ¼ dW=d~c. The constraint of u0 P u0;KPP has been
obtained by linearizing the ODE at the leading edge ~c! 0 (an unsta-
ble state) of a TW. Moreover, Kolmogorov et al. [3] analytically stud-
ied the initial boundary value problem (IBVP) with localized initial
conditions, i.e. ~cðx; t ¼ 0Þ ¼ ~c0ðxÞ, with ~c0ðxÞ being a monotonously
increasing function in an interval of x1 < x < x2, but ~c0ðxÞ ¼ 0 if
x < x1 and ~c0ðxÞ ¼ 1 if x > x2 > x1. A step function H(x � x1) is a partic-
ular case of such an initial profile ~c0ðxÞ with x1 = x2. Finally,
Kolmogorov et al. [3] have solved the speed selection problem
and have proved that solutions to the IBVP approach the TW solu-
tion characterized by the slowest propagation speed provided that
the initial wave profiles are steep enough, e.g. the step function.
TW solutions found by Kolmogorov et al. [3] are called ‘‘pulled’’
waves [4,5] in order to stress that the speed of such a solution is
determined from the linear analysis of the problem at the unstable
state ~c� 1, i.e. the TW is pulled by its leading edge.

In the combustion literature, the KPP approach was widely
applied to the CDR equation that results from Eqs. (1) and (2) in
order to determine fully developed turbulent burning velocity Ut

[6–14], which was associated with the slowest TW speed in the
cited papers. Various expressions for Ut were obtained in Refs.
[6–14] depending on invoked closure relation for the mean rate
Wð~cÞ, but Ut was controlled by Dt and the slope of Wð~cÞ at ~c ! 0
in all these studies.

It is worth noting, however, that the source term in the DR
equation is not necessary to be a concave function in a general
case. The maximum slope of Wð~cÞ can be reached inside the inter-
val of 0 < ~c < 1 and the source term can have an inflection point,
where the dependence of W on ~c changes from being concave to
convex, i.e. W½ð~c1 þ ~c2Þ=2� < ½Wð~c1Þ þWð~c2Þ�=2 for any
0 6 ~c1 < ~c2 6 1, or vice versa. Such a case was studied by
Aronson and Weinberger [15] who have proved that the BVP for

Eq. (3) has a solution for any u0 P u0;min P u0;KPP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DtW 0ð0Þ

q
,

but, contrary to the KPP case, the slowest speed u0,min cannot be
found by linearizing Eq. (3) at ~c� 1. They have proved also that
TW solutions characterized by a continuous spectrum of u0 > u0,min

are pulled, whereas, if u0,min > u0,KPP, then, the TW solution with

u0 = u0,min is basically different, i.e. it has the steepest profile of
~cðXÞ at ~c ! 0, with the speed u0,min being controlled by processes
in the entire wave. Such a TW solution is called pushed wave
[4,5]. Examples of pushed waves that are modeled by CDR equa-
tions with q = const, ~u ¼ 0, and source terms that are convex some-
where within the interval of 0 < ~c < 1 can be found e.g. in Refs.
[16–18]. Aronson and Weinberger [15] have also solved the speed
selection problem and have shown that a solution to the IBVP asso-
ciated with Eqs. (1) and (2) approaches the TW solution character-
ized by the slowest propagation speed u0,min provided that the
initial wave profile is steep enough, e.g. the step function. If applied
to premixed turbulent combustion, the general mathematical
result by Aronson and Weinberger [15] indicates that the KPP
approach cannot be used to determine Ut if an invoked closure
relation for Wð~cÞ has an inflection point in the interval of 0 < ~c < 1.

A laminar premixed flame modeled with the following CDR
equation

q
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where U(c) = 0 at 0 6 c 6 c1 < 1 and Ze� 1, is another well-known
example of a pushed TW, as shown by Zeldovich and Frank-
Kamenetsky [19–21]. Here, c = (T � Tu)/(Tb � Tu) is the normalized
temperature, Ze ¼ ðTb � TuÞE=ðR0T2

bÞ is the Zeldovich number, Tu

and Tb designate temperatures of unburned and burned gases,
respectively, E is the activation temperature of a single global reac-
tion that combustion chemistry is reduced to, R0 is the universal gas
constant, D is molecular diffusivity, s0 is a reaction time scale, U(c)
is a weakly non-linear (when compared to the Arrhenius exponen-
tial term) function such that U(c1 < c < 1) > 0 and U(1) = 0, and
r = Tb/Tu. The KPP theory is not applicable to this problem, because
dU/dc = 0 at the leading edge, and there is a single TW solution [19–
21]. In the case of Uð0 6 c < 1Þ > 0, Eq. (4) can have an intermediate
asymptotic solution [21–23], which retains its shape and speed over
a long time interval and is associated with a pushed or pulled wave
if r � 1 is much larger than or on the order of R0Tb/E, respectively,
with the speed of the pulled flame being consistent with the KPP
theory.

As far as premixed turbulent combustion is concerned, transi-
tion from pulled to pushed TWs is straightforwardly relevant to
the following long-standing basic issue. On the one hand, produc-
tion of flamelet surface area within a premixed turbulent flame
brush is often considered to control its speed including the speed
of its leading edge [24,25]. On the other hand, within the frame-
work of the leading point concept pioneered by Zeldovich [26],
see also pp. 450–452 in Ref. [21], the mean turbulent flame speed
is hypothesized to be controlled by processes localized to the lead-
ing edge of the mean flame brush, whereas the production of fla-
melet surface area within the flame brush adjusts itself to the
speed of the leading edge. The readers interested in further discus-
sion of the leading point concept and facts that indirectly support it
are referred to books [27,28], a review paper [29], and recent con-
tributions by Lieuwen et al. [30–34].

To the best of the present authors knowledge, TW solutions to
Eqs. (1) and (2) have not yet been investigated analytically in the
case of Wð~cÞ with an inflection point at 0 < ~c < 1 in the turbulent
combustion literature. The major goal of the present work is to fill
this gap. Moreover, the following issue specific to turbulent flames
will also be addressed.

As predicted by Clavin and Williams [35] and Bray and Libby
[36], experimentally discovered by Moss [37] and by Yanagi and
Mimura [38], and documented in a number of subsequent experi-
mental and direct numerical simulation (DNS) studies reviewed
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