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a b s t r a c t

Modelling the physics of combustion remains a challenge due to a large range of temporal and physical
scales which are important in these systems. Detailed chemical kinetic mechanisms are used to describe
the chemistry involved in the combustion process yielding highly coupled partial differential equations
for each of the chemical species used in the mechanism. Recently, Principal Components Analysis
(PCA) has shown promise in its ability to identify a low-dimensional manifold describing the reacting sys-
tem. Several PCA-based models have been developed which may be well-suited for combustion prob-
lems; however, several challenging aspects of the model must be addressed. In this paper, the
parameterization of state-space variables and PC-transport equation source terms are investigated. The
ability to achieve highly accurate mapping through various nonlinear regression methods is shown. In
addition, the effect of PCA-scaling on the ability to regress the surface is investigated. Finally, the present
work demonstrates the capabilities of the model by solving a reduced system represented by several PC-
transport equations for a perfectly stirred reactor (PSR) configuration.

� 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The ability to accurately model a turbulent combustion system
remains challenging due to the complex nature of combustion sys-
tems. A simple fuel such as CH4 requires 53 species and 325 chemi-
cal reactions [1] to be accurately described. More complex fuels
require increasingly complex chemical mechanisms. Each resolved
chemical species requires a conservation equation which is a cou-
pled, nonlinear partial differential equation. Such systems are only
possible to solve under very limited situations at this time due to
computational costs. Current computational expenses result in a
need for reduced models which can adequately describe the
chemical reactions. Many methods attempt to reduce the complex-
ity of the mechanism by splitting the system into slow and fast
variables, using equilibrium assumptions for fast chemical pro-
cesses, and occupying the computational resources on the more
pertinent evolution of species within the reacting system [2,3].
Indeed, in these complex combustion reaction mechanisms many
of the species evolve at time-scales much larger than the time-

scales of interest, allowing for decoupling of fast and slow pro-
cesses while maintaining accuracy. Low-dimensional manifolds
exist in these systems which can describe the governing character-
istics of the flames. Several models take advantage of this, includ-
ing the steady laminar flamelet model (SLFM) [4–6], flamelet-
generated manifolds (FGM) [7,8], or the flame prolongation of
ILDM (FPI) [9–11] to name a few. As a fundamental example, the
steady laminar flamelet model uses the mixture fraction and mix-
ture fraction variance to describe the flame as an ensemble of
steady laminar diffusion flames undergoing various strain rates.
In some cases, this provides a good representation of the entire
system with a reduced number of variables.

Recently, principal component analysis (PCA) has been investi-
gated for its use in combustion modelling. Several advantages of
PCA include: its ability to identify orthogonal variables which are
the best linear representation of the system; its ability to reduce
in dimensionality requiring fewer coordinates; and the ability to
do the analysis on canonical systems, such as the counter diffusion
flames or empirical data-sets containing highly complex turbulent
chemistry interaction. Parente et al. [12,13] used PCA to identify
the low-dimensional manifold in one-dimensional turbulence
and experimental data. Biglari and Sutherland [14] and Yang and
Pope [15,16] enhanced the capability of the PCA concept by com-
bining the analysis with nonlinear regression, allowing a nonlinear
mapping between state-space variables and the linear PCA basis.
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The work of Biglari and Sutherland showed that the PC parameter-
ization is superior to the standard flamelet parameterization, for
the ODT data-set investigated in the study. Mirgolbabaei and
Echekki [17] extended the nonlinear mapping concept using artifi-
cial neural networks and investigated the potential of kernel PCA
[18,19], showing the high compression potential derived by trans-
forming the initial problem into a non-linear featured space where
linear PCA is carried out. In addition, several combustion models
have been proposed based on the concepts from PCA. Sutherland
and Parente [20] derived transport equations for the principal com-
ponents (PCs), and discussed the feasibility of a model where the
PCs are used directly to construct state-space variables. Biglari
and Sutherland [14] extended the concept of transporting the PCs
by suggesting the nonlinear regression in order to increase the
accuracy and reducibility of the model. Coussement et al. [21],
Isaac et al. [22] and other groups [23] proposed transporting a
reduced set of state-space variables and used the PC basis for
reconstructing the variables which are not represented. Najafi-
Yazdi et al. [24] used PCA to identify optimal progress variables
to use the flamelet-generated manifold framework.

The present work seeks to advance the understanding and
application of the PC-transport approach of Sutherland and
Parente [20,14] by first analyzing the effect of several scaling
methods on the PC basis, and the resultant ability to regress the
nonlinear state-space variables to the PC basis. Various regression
methods used in previous studies [14,17], as well as several alter-
native methods are analyzed in their ability to approximate the
reacting state-space from the PCs. In order to demonstrate the
accuracy of the method within a numerical solver, an unsteady
perfectly stirred reactor (PSR) calculation is shown using the PC-
transport approach. The PSR provides a validation of the approach
by comparing the reduced model to the detailed simulation results.
To the authors knowledge all published analysis on the PC-trans-
port concept using nonlinear regression has been carried out on
various data-sets using a priori analysis [14,17,19,18]. Only
recently, a posteriori work has begun in this area. Specifically, the
work of Mirgolbabaei [25], who provides an a posteriori demon-
stration of the nonlinear PC-transport approach using one-dimen-
sional turbulence (ODT) simulations.

2. Theory

A principal component analysis is done by taking a data-set
consisting of n observations and Q independent variables and
organizing it as an n � Q matrix (X). The data X is centered to zero
by its corresponding means �X, and scaled by the diagonal matrix,
D, containing a scaling value for each of the k variables:

Xs ¼ ðX� �XÞD�1 ð1Þ

For sake of simplicity, Xs will be simply indicated as X in the follow-
ing. In a PC analysis, the principal components (Z) are identified by
performing an eigenvalue decomposition of the covariance matrix
of X:

1
Q � 1

XT X ¼ A�1LA ð2Þ

The eigenvector matrix A (referred to here as a ‘basis matrix’) is
then used to project the original state-space into PC space:

Z ¼ XA ð3Þ

Now given a subset of the basis matrix A, denoted as Aq and apply-
ing the previous equation, an approximation of the original cen-
tered and scaled state-space can be made using the following:

X � ZqAT
q : ð4Þ

In the PC analysis, the largest eigenvalues correspond to the first
columns of A. This means the largest amount of variance in the
original variables is described by the first PCs. Accordingly, when
one truncates the basis matrix (Aq), the resultant approximation
from Eq. (4) may be very accurate, while representing the system
with fewer variables.

In the work of Sutherland and Parente [20], a combustion model
is proposed where conservation equations for the PCs are derived
from the general species transport equation [26]:
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where Rk is the net production rate of species k. One can easily
derive the transport equations for the PCs (Zq) given the basis
matrix Aq, the scaling vector dk, being the diagonal components of
D, and the centering vector �Yk:
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where sZq is simply the net production rate of the principal compo-
nent. The term DZq
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is the diffusion flux for the principal com-

ponent. For a more detailed discussion on the treatment of the PCs
diffusive flux, where molecular diffusion is important refer to [27].
According to the proposed formulation, one can theoretically use
PCA with its inherent advantages. These advantages include: the
ability to represent the system with a reduced number of variables;
the option to include a predetermined amount of reconstruction
error (dependent on q, the number of retained PCs), and possibly
a reduction in stiffness if the selected PCs are highly weighted with
reacting species that change more slowly, such as the major species.

In order to use PCA to its fullest potential, several aspects of PCA
must be studied. One of these aspects, is how the data is scaled (Eq.
(1)). The various effects of scaling have been studied previously in
[14,28,22]. The same approach has been followed in the present
paper to find the best scaling option for the present application
of PCA, using a data-set which exhibits physics of interest. A one-
dimensional turbulence (ODT) data-set of a non-premixed synthe-
sis/air jet has been considered here [29,30]. The simulation
includes 11 chemical species [31] (H2, O2, O, OH, H2O, H, HO2,
CO, CO2, HCO, N2), and 21 chemical reactions and it is initialized
with a temperature of 500 K, with air as the oxidizer (0.7241 N2

and 0.2759 O2 by mass) and a fuel stream containing 0.0078 H2,
0.5511 CO, and 0.4411 N2 by mass. The ODT realizations are saved
on a uniform grid of 672 grid points evenly spaced over a 0.01 m
domain. The velocity field is initialized with a Reynolds numbers
of 2500. The ODT data-set is particularly interesting because of
the turbulence/chemistry interaction observed in the data, includ-
ing physical effects such as extinction and re-ignition. Similarly to
previous investigations [14,28,22], the a priori analysis showed
that pareto scaling has a distinct advantage for major species and
source terms reconstruction.

The a priori analyses showed, however, that at least 8 PCs were
required to accurately reconstruct the ODT data-set and the
corresponding source terms, due to the linear nature of the PC-
based model. Considering the original 11 degrees of freedom of
the system (with differential diffusion, enthalpy and elemental
mass fractions are not constant), q ¼ 8 implies only a minor prob-
lem reduction. An alternative to the direct reconstruction of X is to
use nonlinear regression functions, which can be used to map the
nonlinear reaction rates or nonlinear species concentrations to the
lower dimensional representation given by the PCs. Biglari and
Sutherland [14] suggest applying a nonlinear mapping to the linear
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