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In this paper, a reinforced gradient-type iterative learning control profile is proposed by making use of system
matrices and a proper learning step to improve the tracking performance of batch processes disturbed by exter-
nal Gaussian white noise. The robustness is analyzed and the range of the step is specified bymeans of statistical
technique and matrix theory. Compared with the conventional one, the proposed algorithm is more efficient to
resist external noise. Numerical simulations of an injection molding process illustrate that the proposed scheme
is feasible and effective.
© 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

Keywords:
Batch process
Iterative learning control
Reinforced gradient
Gaussian white noise

1. Introduction

In industrial community, petrochemical processes, microelectronic
manufacturing and metallurgical processes are typical batch processes,
each of which repetitively executes a given task over a fixed duration
[1]. For conventional practical execution, an industrial batch process is
tuned by a proportional-integral-derivative (PID) controller so that
the controlled system may operate with desired performance [2,3].
However, for some plants, the PID-controller-tuned systems operate
with unsatisfactory transient performance such as slower response
with longer settling time or faster response with oscillatory overshoot
[4,5]. As a consequence, the dissatisfaction may influence the product
qualitywhen the controlled systemoperates repetitively. Under this cir-
cumstance, it is necessary to design a PID controller in a trade-off mode.
To improve the transient performance, some intelligent techniques
have been developed such as expertise knowledge for selecting piece-
wise PID controller gains [6,7] and iterative learning control (ILC) strat-
egies for generating a sequence of upgraded control commands [8–13]
and so on.

The ILC strategy was first proposed by Arimoto et al., with an ILC
scheme applied to a robotic manipulator while it is repetitively
attempting to track a desired trajectory [12]. The basic mechanism of
the ILC strategy is to generate the control signal for the next operation
by compensating for the current control signal with its proportional
tracking error, error derivative and/or error integral so that the tracking

performance of the next operation gets better. Owing to its good learn-
ing efficiency and a prior less system knowledge requirement, the ILC
theme has attracted much attention not only in robotic society for
manipulator's trajectory tracking but also in industrial fields such as
batch process for transient performance improvement [8–13] and CD
disk recording [14,15]. The fundamental ILC updating rules are con-
structed on the basic postulate that the desired trajectory is iteratively
invariant while the system repetitively operates over a fixed finite
time interval with resettable initial states [16,17]. One of the key ILC
contributions is convergence analysis, which has been progressive by
assessing the tracking error in forms of lambda-norm, Lebesgue-p
norm or discrete frequency Parseval energy [12,18,19] and so on. For
practical applicability, the robustness of ILC schemes to system parame-
ter uncertainty, noise perturbation and initial state shifts has been
analyzed [20–22]. Besides, when the system dynamics is identified,
the system information is utilized to construct optimized/optimal ILCs
for fastening the learning convergence [23–29].

For the optimized ILCs, the main efforts have been made on the
norm-optimal ILC and the parameter-optimized ILC [23–26]. In these
investigations, Both ILCs can guarantee the tracking error measured
for mean-square norm to monotonically reduce, though its robustness
to external noise is not involved. In addition, as typical optimization
methodologies, Newton and quasi-Newton methods have been
harnessed to compose optimized iterative learning control updating
laws [27,28], where the convergence is analyzed regardless of the ro-
bustness. Progressively, a gradient-type iterative learning control
(GILC) updating law has been constructed for the system with uncer-
tainty [29], where theweighted learning gain consists of a scalarmatrix
and the robust monotone convergence of the GILC scheme is achieved.
However, its learning performance gives milder convergence and
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weaker resistance to uncertain noise. The reason is perhaps that the sca-
lar learning gain matrix does not sufficiently take the advantage of sys-
tem knowledge. Besides, because the searching path of the gradient-
type ILC algorithm is saw-tooth and the learning step gets very small
when the output closes the desired trajectory, especially, when the sys-
tem is ill-conditioned, the tracking behavior of the GILC scheme goes
tagging. Thus the scheme needs to be reinforced with system knowl-
edge so as to enhance the tracking performance. Additionally, as system
external noise is inevitable in practical application, the robustness of the
learning scheme to noises is necessarily explored.

This paper develops a reinforced gradient-type iterative learning
control (RGILC) algorithm for a class of discrete linear time-invariant
systemswith external Gaussian noise. The idea is tomake use of system
matrices and a proper learning step to weigh the gradient. The robust-
ness of the RGILC algorithm to external noise is analyzed in virtue of
mathematical expectation and the range of learning step is specified
for convergent assumption. Numerical simulations are presented to
illustrate the validity as well as the effectiveness.

2. RGILC Algorithm and Preliminaries

Consider a class of discrete linear time-invariant single-input, single-
output batch process control systems as follows.

xk iþ 1ð Þ ¼ Axk ið Þ þ B uk ið Þ þ ξk ið Þð Þ;
yk iþ 1ð Þ ¼ Cxk iþ 1ð Þ þ ςk iþ 1ð Þ;
xk 0ð Þ ¼ 0; i ∈ S

8<
: ð1Þ

where S = {0, 1, 2, …, N-1} denotes the set of discrete time sampling
with N referring to the total sampling numbers, index i stands for the
sampling number and subscript k ∈ ℕ marks the iteration or batch
index, xk(i) ∈ ℝn, uk(i) ∈ ℝ and yk(i) ∈ ℝ are n-dimensional state, scalar
input and scalar output at the ith sampling time of the kth iteration,ξk(i) ∈ ℝ, i ∈ S and ςk(i+ 1) ∈ ℝ, i ∈ S are load noise and measurement
noise, respectively, A, B and C are constant systemmatrices with appro-
priate dimensions satisfying CB ≠ 0.When the learning process is realiz-
able, i.e., for a desired trajectory yd(i), i∈ S, there exists a unique control
input signal ud(i) such that

xd iþ 1ð Þ ¼ Axd ið Þ þ Bud ið Þ;
yd iþ 1ð Þ ¼ Cxd iþ 1ð Þ; i ∈ S:

�
ð2Þ

We denote

H ¼ ½ CB 0 0 ⋯ 0
CAB CB 0 ⋯ 0
CA2B CAB CB ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
CAN−1B CAN−2B CAN−3B ⋯ CB

#
N�N

, uk ¼

"
ukð0Þ
ukð1Þ

⋮
ukðN−1Þ

#
,

yk ¼

"
ykð1Þ
ykð2Þ

⋮
ykðNÞ

#
, ξk ¼

"
ξkð0Þ
ξkð1Þ
⋮

ξkðN−1Þ

#
and ςk ¼

"
ςkð1Þ
ςkð2Þ

⋮
ςkðNÞ

#
,

where, H is termed as Markov parameter matrix of system (1), vectors
uk, yk, ξk andςk are namedas input, output, load noise andmeasurement
noise super vectors, respectively. Then system (1) is compacted as

yk ¼ H uk þ ξkð Þ þ ςk: ð3Þ

Let yd= [yd(1), yd(2),…, yd(N)]T be a predetermined desired trajec-
tory that the system output should follow as an ideal target, where T de-
notes the transpose operator and ek = yd − yk denotes the tracking
error vector. The objective of developing an iterative learning control al-
gorithm for system (3) is to generate a sequence of input super vectors
{uk} so that it may stimulate the system (3) to track the desired

trajectory yd as precisely as possible as the iteration index goes to infin-
ity, namely,

lim
k→∞

E ekk k22
n o

≤ ε ð4Þ

where ‖⋅‖2 denotes 2-norm of a vector and E{·} represents the mathe-
matical expectation operator.

Beforementioning the ILC scheme, it isworthy tomind that, theoret-
ically, the desired control input vector can be achieved by inversing the
system as ud =H−1yd regardless of noise when theMarkovmatrix H is
invertible. However, in reality, especially for rapid responding dynamics
with large-scale Markov matrix, the inversion technique needs a com-
plex computation, which is sensitive to system parameter perturbation
or computation error accumulation. Sometimes, the inversion method
incurs divergence of the learning scheme [8].

One of feasible ILC manners to make use of system knowledge is a
gradient-type ILC updating mechanism briefed as follows.

For system (3), define a sequence of iteration-wise quadratic objec-
tive functions taking forms of

min
uk

J ukð Þ ¼ 1
2

yd−Hukk k22: ð5Þ

It is easy to derive that the gradient of function J(uk) with respect to
argument uk is ∇J(uk) = − HTek. Then a (descent) gradient-type ILC
(GILC) scheme is constructed as

ukþ1 ¼ uk þ ΛHTek ð6Þ

where Λ = αI represents a scalar learning gain matrix with learning
step α. The details may refer to Ref. [29].

For the GILC algorithm (6), by replacing its learning gain matrix Λ
with a symmetric matrix α(2I − αHTH), a reinforced GILC (RGILC)
updating law is developed as follows: u1: given arbitrarily;

ukþ1 ¼ uk þ α 2I−αHTH
� �

HTek; k ¼ 1;2;⋯: ð7Þ

2.1. Basic Assumptions

(A1) Load noise super vectors ξl, l∈ℕ+ andmeasurement noise super
vectors ςh, h ∈ℕ+ are Gaussianwhite-type. Mathematically, the
covariancematrices with respect to ξl and ςl satisfy the following
relations

E ξkξTkn o
¼ σ2I;

E ξkξTln o
¼ 0; l ≠ kð Þ

8<
: ;

E ςkςT
k

� � ¼ σ̂2I;
E ςkςT

h

� � ¼ 0; h ≠ kð Þ

(

where σ2 denotes the variance of load noise ξ(i), i =

0,1,2,...,N, l ∈ ℕ+, σ̂
2 refers to the variance of measurement noiseςh,l(i), i = 0,1,2,...,N, h∈ℕ+, 0 stands for a zeromatrix, and I rep-

resents an identity matrix with appropriate dimensions.
(A2) Load noise super vectors ξl, l ∈ ℕ+ and measurement noise super

vectors ςh, h ∈ ℕ+ are independent, that is, E{ξlςh
T} = 0 and

E{ςlξhT} = 0 hold for any l, h ∈ ℕ+.
Assume that Q= (qhl)n × n is a real square symmetric matrix. The
eigenvalues set of Q are denoted as {λj(Q)}j = 1

n , while its maximal
and the minimal eigenvalues are denoted as λmaxðQ Þ ¼ max

1≤ j≤n
fλ j

ðQ ÞgandλminðQ Þ ¼ min
1≤ j≤n

fλ jðQ Þg, respectively. The spectral radial
is defined as ρðQ Þ ¼ max

1≤ j≤n
fjλ jðQ Þjg and the singular values of Q

are defined as fσ jðQ Þgnj¼1 ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ jðQ TQ Þ

q
g
n

j¼1
. The trace of matrix
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