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In soft sensor field, just-in-time learning (JITL) is an effective approach tomodel nonlinear and time varying pro-
cesses. However,most similarity criterions in JITL are computed in the input space onlywhile ignoring important
output information, whichmay lead to inaccurate construction of relevant sample set. To solve this problem, we
propose a novel supervised feature extractionmethod suitable for the regression problem called supervised local
and non-local structure preserving projections (SLNSPP), in which both input and output information can be
easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain
the virtue of locality preserving projections but also prevent faraway points from nearing after projection,
which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable
for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a
SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the
scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets
to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and
SLNSPP.
© 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

Industrial plants are usually equipped with a large number of hard-
ware sensors to deliver data for process monitoring and control [1,2].
However, many important quality related variables are very difficult
to obtain, such as product concentration and octane number. Although
hardware analyzers provide online measurements of these difficult-
to-measure variables, theymight not be satisfactory due to their expen-
siveness, large analysis cycle, and inaccuracy [3]. Some variables, such as
themelting index of polypropylene, are mostly available in laboratories
only [4]. These technical limitations result in infrequent and inaccurate
measurements of these key variables, which may lead to very bad per-
formance of closed loop control system. In some cases, such as sulfur re-
covery unit [2], the damage of acid gases such as hydrogen sulfide and
sulfur dioxide tomeasuring instruments causes frequent sensormainte-
nance and replacement with high production cost.

As an alternative, soft sensor is an effective way to solve or alleviate
these problems. Although first principal models have the potential for
describing the phenomena in a process, the difficulty in modeling com-
plex processes accurately leads to the popularity of data-driven soft sen-
sors [2]. In the past two decades, a variety of algorithms have been

applied to develop data-driven soft sensors for industrial processes,
such as multivariate statistical regression including principal compo-
nent regression (PCR) [5] and partial least squares regression (PLSR)
[6]. However, both PCR and PLSR are limited to linear processes. One so-
lution to this problem is to develop soft sensors using nonlinear algo-
rithms such as artificial neural networks [7], support vector machines
[8,9], and the kernel version of PLS [10]. Although the process nonline-
arities are modeled, the performance of soft sensors deteriorates due
to the variations of process characteristics as most industrial processes
are time-varying [11,12].

Just-in-time learning (JITL) is a commonly used strategy for simulta-
neously addressing the above two problems, i.e., the process nonlinear-
ity and time-varying. It adopts the philosophy of “divide and rule”,
where the global model is locally linearized around some sample such
that the process nonlinearity can be modeled. Besides, as the historical
data set is updated with newly measured samples, JITL can intrinsically
copewith the degradation of soft sensormodel. Thus soft sensors devel-
opedwith JITL are called “adaptive soft sensor” [13]. One key step in JITL
is to select similar samples of the query sample xq. Themore similar the
selected samples and xq are, the better the estimation performance is.
Thus our task is to construct the similarity metric. The Euclidean dis-
tance is one commonly used similarity criterion [14,15], where the k
nearest neighbors (kNN) of xq are selected as the similar sample set. Be-
sides, k surrounding neighbors [16], k bipartite neighbors [17], and
enclosing kNN [18] have also been developed to improve the perfor-
mance of kNN. In order to further enhance the accuracy of similar
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sample set selection, Cheng and Chiu [19] formulated a novel similarity
criterion using not only the distance information but also the angle be-
tween two samples. The angle between two samples with the query
sample as the origin of coordinate can also be used as similarity index
for selecting similar sample pairs, which is usually named as correlation
coefficient [20,21]. In addition to these distance and/or angle based sim-
ilarity index, Fujiwara et al. [22] proposed to construct similarity criteri-
on by combing the squared prediction error andHotelling T2 statistics of
PCAmodel, through which the correlation among process variables can
be taken into consideration.

Although these similarity indexes have been widely used to develop
JITL based soft sensors, they are computed in the input space only. In
other words, the precious and important output information of labeled
samples is wasted, which may lead to inaccurate similar sample selec-
tion. However, directly selecting similar samples in the input–output
space is almost impossible as the query sample contains only secondary
variables. Therefore, we intend to fulfill such a task indirectly in the
lower dimensional space by using feature extraction algorithm. Chen
et al. [14] have conducted a good pioneer work in this respect, in
which supervised locality preserving projections (SLPP) are developed
for regression problem and relevant sample selection is implemented
in the feature space, without knowing the output of the query sample.
However, locality preserving projections (LPP) aim to preserve the
local structure only and does not concern the relative positions of two
disconnected samples. Two faraway samples may become near after
the projection. In such a situation, the two samples aremistaken as sim-
ilar, resulting in inaccurate relevant sample selection and undesirable
estimation performance. Such an insufficiency of LPP has already been
demonstrated by Yang et al. [23] in classification problems.

In order to solve such a problem, in this paper, we propose a novel
feature extraction algorithm named local and non-local structure pre-
serving projections (LNSPP), so that the virtue of LPP is preserved
with nearby points still close after projection and distant samples still
faraway in the feature space. Moreover, the singularity in LPP can be
avoided through imposing an orthogonal constraint. This is completed
by solving a dual-objective optimization problem. Further, we develop
a supervised version of LNSPP for regression problem, i.e. SLNSPP, and
apply it to JITL (SLNSPP-JITL) for developing adaptive soft sensor. In ad-
dition, a sparse learning strategy with adaptive threshold value is pre-
sented for database monitoring to reduce the online computational
load of neighborhood search in JITL. The proposed schemes are evaluat-
ed by two case studies. The first one is used to test the structure preserv-
ing ability of LNSPP and the other is employed to examine the
performance of SLNSPP-JITL when it is applied to soft sensors.

2. Just-In-Time Learning

Just-in-time learning (JITL) features the following steps.

1) When the estimation need for a query sample xq arises, database
search is implemented to find the most similar k samples of xq
according to some similarity criterions.

2) Build one local model with these similar samples.
3) Estimate the output of xq by this local model and then discard it.

In general, there are two learning types in JITL. The first one is called
locally weighted average (LWA) and the other is named as locally
weighted regression (LWR). Let the selected k similar samples be denot-
ed as {Xs ∈ Rk × m, Ys ∈ Rk × 1} = {(x1s , y1s), (x2s , y2s),…, (xks, yks)}. Here
m is the dimensionality of the input vector and xis with output of yis

representing the ith similar sample of xq. In LWA, the estimated output
of xq is formulated as

ŷq ¼
Xk
i¼1

siysi =
Xk
i¼1

si ð1Þ

where si represents the weight assigned to x i
s, which is usually set as the

similarity between xq and x i
s. Different fromLWA, LWR trains a temporary

local model f L using {Xs, Ys} and the predicted value for xq is computed as

ŷq ¼ f L xq
� �

: ð2Þ

The local model f L can be trained by either linear algorithms such as
weighted least squares or nonlinear algorithms with more powerful
learning ability such as weighted least squares support vector regres-
sion. Therefore, LWR is more flexible and complex than LWA, while
LWA is easy to implement and usually requires less samples than
LWR. In Section 4, the properties of both LWA and LWRwill be studied.

3. JITL Using Supervised Local and Non-local Structure Preserving
Projections for Adaptive Soft Sensor

3.1. Local and non-local structure preserving projections

Assume that we have n training samples {X ∈ Rn × m, Y ∈ Rn × 1} =
{(x1, y1), (x2, y2), …, (xn, yn)}. The LPP seek for several projection
vectors A = [a1, a2, …, al] ∈ Rm × l, such that the local structure can be
preserved. That is, two nearby points in original space are expected to
be still close in projected space. It maps X = [xT

1
, x2T, …, xnT]T to Z = [zT

1
,

z2T,…, znT]T, where zi = xiA ∈ R1× l. Take l= 1 for example, the objective
function of LPP is defined as [24]

min JL ¼ 1
2

X
i; j

zi−z j
� �2WL

i j

¼ 1
2

X
i; j

xia−x ja
� �2WL

i j

¼
X
i

aTxTi D
L
iixia−

X
i; j

aTxTi W
L
i jx ja

¼ aTXT DL−WL
� �

Xa

¼ aTSLa

ð3Þ

whereW L represents the adjacency matrix and DL is a diagonal matrix
whose entries are the row (or column, as W L is symmetric) sum of
WL, that is,Dii

L =∑jWij
L. Here SL=XT(DL−WL)X is called “local scatter

matrix”. The elements of W L are defined as

WL
i j ¼

Si j; xi & x j connected
0; otherwise

�
ð4Þ

where 0 ≤ Sij ≤ 1 represents the similarity between xi and xj, usually
defined by heat kernel,

Si j ¼ exp −d2i j=2σ
2

� �
ð5Þ

where dij represents the distance between xi and xj. By analyzing Eq. (4),
one can readily find that two faraway samples may probably be nearby
after the projection, as the connectedweight between them is usually 0.
That is, LPP considers only the local structure but ignores the non-local
structure. Similar to Eq. (3), the preserving of non-local structure can be
accomplished by [25]
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