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a b s t r a c t

This paper discusses a classical paradox in thermoacoustics when jump conditions are derived for
acoustic waves propagating through a thin flat flame. It shows why volume conservation must be used
for perturbations at zero Mach number (continuity of v 0 ¼ u0A) while mass conservation is used at
non-zero Mach numbers (continuity of m0 ¼ �q0u0Aþ �u0q0A). First, from the three-dimensional mass
balance equation, a quasi one-dimensional mass balance equation is obtained for surface-averaged
quantities. Then it is demonstrated that the acoustic and entropy disturbances are coupled and need to
be solved together at the flame front because singularities in the entropy profile affect mass conservation.
At non-zero Mach number, the entropy generated in the thin flame is convected by the mean flow: no
singularity occurs and leads to the classical mass conservation at the interface. However, at zero Mach
number, the flow is frozen and entropy spots are not convected downstream: they produce a singularity
at the flame front due to the mean density gradient, which acts as an additional source term in the mass
conservation equation. The proper integration of this source term at zero Mach number leads, not to the
mass, but to the volume flow rate conservation of perturbations. A balance equation for the volume flow
rate has been also derived. This equation couples the volume flow rate and the mean and fluctuating
pressure. This latter equation degenerates naturally toward the volume flow rate conservation at the
flame interface at zero Mach number because of the pressure continuity. This theoretical analysis has
been compared to LEE (Linearized Euler Equation) simulations of stable flames and a good agreement
is found for the entropy fluctuations shape and the conserved quantities.

� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Acoustics remains a crucial topic in the development of modern
gas turbines: acoustic waves can propagate in the whole combus-
tion chamber, interacting with the compressor exit, the turbine
stator inlet or the flames, leading to the production of direct
[1–3] and indirect noise [4–8], vibrations and combustion instabilities
[9–13].

Describing the acoustic modes, which can appear in combustion
chambers and finding methods to control them has been the topic
of multiple studies over the last decades [9,11,12,14–20]. The com-
plexity and the cost of performing laboratory-scale experiments
explain why progress in this field has been slow for a long time

since. Recently, new well-instrumented acoustic experiments
[7,14,21,22] have opened the path to investigate flame response
to acoustics [23], direct and indirect noise [7] as well as combus-
tion instabilities [10,14,15,21,22]. In addition, theoretical and
numerical approaches have progressed in different directions: (1)
three-dimensional high fidelity simulations of combustion cham-
bers have been performed [24–27], (2) three-dimensional acoustic
tools have been developed [28–31] and (3) analytical approaches
have been proposed to describe acoustics in simplified configura-
tions at low cost [4,5,8,16,32–35]. In particular, this last approach
allows the investigation of the underlying mechanisms involved
in acoustic phenomena since explicit expressions of acoustic
sources or growth rates of modes are obtained.

These low-order methods for thermoacoustics are usually based
on a one-dimensional formalism in which acoustic waves are prop-
agated in a network. A paradox arises from the fact that acoustic
modeling is usually performed at zero Mach number (�u0 ¼ 0) while
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combustion is a process necessarily place at non zero Mach num-
ber (otherwise reactants are frozen and are never transported to
the reaction zone leading to zero mean heat release Q 0 ¼ 0, i.e.
no temperature or density gradients). A common approach is
therefore to consider two ‘‘worlds’’: the first one is the ‘‘acoustic
world’’ at zero Mach number and the second one is a ‘‘convective
world’’ required by the flame to create the density/temperature
gradients at the flame front. Flame Transfer Functions used in
Helmholtz solvers are a typical example of how a convective quan-
tity – the time-delay – is incorporated into the ‘‘acoustic world’’
which assumes a zero Mach number. Low-order models are usually
prone to this paradox when dealing with acoustic jump conditions
required to link fluctuating acoustic quantities at both sides of a
thin flame: for a thin flame located at a section change (Fig. 1) in
the limit of zero Mach number, typical thermoacoustics studies
[11,17,21,30,33,35–40] incorporate a jump condition corresponding
to the continuity of the volume flow rate to express velocity
perturbation u01 and u02 on both sides of the flame:

u01A1 ¼ u02A2 ð1Þ

while the intuitive condition would be to write mass conservation:

�q1u01A1 ¼ �q2u02A2 ð2Þ

which includes the mean density values on both sides of the flame
and differs strongly from Eq. (1). Mass conservation is actually used
at non-zero Mach numbers by some authors [18,36,41–43], leading
to some confusion in the community. The question becomes more
complex in network models where Mach number can be zero in cer-
tain parts of the combustion chamber modeled as one-dimensional
tubes and non null in others (Fig. 1). A crucial question is therefore
to prove the consistency between jump conditions at non-null
Mach number (M – 0) and the limit case when the Mach number
goes to zero (M ! 0). Moreover, the differences between Eqs. (1)
and (2) are large because the ratio �q1= �q2 is of the order of 5–10
in most flames. Using Eq. (1) or (2) leads to very different results
in Helmholtz solvers. Therefore, understanding which velocity jump
condition must be used is a critical building block in all Helmholtz
formulations which clearly requires a careful analysis.

The present paper tries to elucidate this paradox by deriving
jump conditions for mass and volume flow rates on a thin flame
front at zero and non-zero Mach number. The first starting point
is to write the mass conservation at non-null Mach number
(Section 2.1). This balance equation is valid but does not degener-
ate simply to the proper equation at zero Mach number where the
volume flow rate is conserved and not the mass flow rate [11].
Another starting point is to write the conservation of total enthalpy
at the interface (Section 2.2), which leads to volume flow rate
conservation (Eq. (1)) for zero Mach numbers. Showing why these
approaches are actually compatible is one goal of the present
paper. To achieve this, jump conditions for both mass
(m̂ ¼ �q0ûAþ q̂�u0A) and volume (v̂ ¼ ûA) flow rate perturbations

are derived in a case corresponding to two tubes connected by a
passive flame and section change (Fig. 1). From the three-dimen-
sional mass balance equation, a quasi-one dimensional mass
balance equation is obtained for surface-averaged quantities in
Section 2. Then the mass flow rate conservation equation is derived
in Section 2.1 for all Mach numbers. This equation couples the
unsteady mass flow rate m̂ and the entropy fluctuations ŝ. In
addition, a conservation equation for the volume flow rate is also
obtained in Section 2.2, which couples the unsteady flow rate v̂
and the fluctuating pressure p̂. The comparison of the mass and
volume flow rate equations in Section 2.3 shows that entropy ŝ
and pressure gradient dp̂

dx singularities present in these equations
change with the Mach number and explains why mass flow rate
is conserved at non-null Mach numbers (Section 3) and volume
flow rate at zero Mach number (Section 4) demonstrating the con-
sistency between the two formulations.

2. Mass and volume flow rate formulation

The conservation of the fluctuating mass and volume flow rate
through the thin flame front of Fig. 1 is described for a configuration
with a ‘‘steady’’ flame, i.e. no heat release fluctuations ( bQ ¼ 0) and
q1 > q2 due to a different temperature in the fresh mixture
(subscript 1) and the hot mixture (subscript 2). No distinction
between null or non-null Mach number is necessary at this step.

2.1. Mass flow rate (m̂)/entropy (ŝ) coupled equations

The local mass conservation reads:
@q
@t
¼ �divðquÞ ð3Þ

where q and u are instantaneous three-dimensional quantities.
Since the case studied is quasi-one-dimensional, a spatial

averaging over the area A is applied:

F ¼ 1
�qA

Z
A
qFdA ð4Þ

where F corresponds to any quantity such as pressure and velocity
and �q ¼ 1

A

R
A qdA.

Eqs. (3) and (4) lead to a one-dimensional mass balance
equation:

A
@�q
@t
¼ � @

@x
ð�q�uAÞ ð5Þ

This equation can be linearized around the mean state:

A
@q0

@t
¼ � @

@x
ðq0�u0Aþ �q0u0AÞ ð6Þ

where any one-dimensional quantity F is decomposed as F ¼ F0 þ F 0

where F0 is the mean quantity and F 0 is the fluctuating part. The
second-order term q0u0A has been neglected.

Fig. 1. Configuration (left) with the corresponding one-dimensional model (right) and the control volume (---): two tubes connected by a flame and an abrupt change of
section from A1 to A2.
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