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This paper proposes a switching multi-objective model predictive control (MOMPC) algorithm for constrained
nonlinear continuous-time process systems. Different cost functions to beminimized inMPC are switched to sat-
isfy different performance criteria imposed at different sampling times. In order to ensure recursive feasibility of
the switchingMOMPC and stability of the resulted closed-loop system, the dual-mode control method is used to
design the switching MOMPC controller. In this method, a local control law with some free-parameters is con-
structed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC. The correc-
tion term is computed if the states are out of the terminal set and the free-parameters of the local control law are
computed if the states are in the terminal set. The recursive feasibility of theMOMPC and stability of the resulted
closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.
Finally, implementation of the switching MOMPC controller is demonstrated with a chemical process example
for the continuous stirred tank reactor.
© 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

Nonlinearmodel predictive control (NMPC)has been receiving great
attention since the 1990s in both industries and academia [1–4], espe-
cially in chemical processes [5–9]. In general, NMPC uses a model of
plants to predict their future evolutions and a control input is deter-
mined by online optimization to minimize a certain performance
criterion subject to the state and/or the control constraints. The input
obtained is applied until the next sampling time and the overall proce-
dure is repeated. Clearly, the cost functions that represent the perfor-
mance criteria of controllers play an important role in the design of
NMPC controllers.

In manyMPC applications to chemical processes [5–9], not only one
but a number of different performance criteria should be taken into
account for the controlled system design. At the same time, chemical
processes are usually characterized by nonlinear behavior and strong
coupling of various process variables. These features lead to a multi-
objective NMPC problem. Different performance criteria to be consid-
ered may be associated with different regions in the system state
space or with different time instants or stages in processes. Take the
grade transition processes of polyolefin plants [8,9] as an example.
The prices of produced polymer resins and consumed energy change

according to certain schedules dependent onmarket conditions. Conse-
quently, we should use several different cost criteria to design different
controllers for the grade transition process in order to meet the
economic optimization for the polyolefin plant. It is also necessary to
quickly react to disturbances or faults whenever they occur [10].

To tackle the problem, several new multi-objective NMPC algo-
rithms have been proposed recently. For instance, the MPC control
sequence is computed to minimize the max of a finite number of objec-
tives [11]. The linearMPC law is derived byminimizing a convex combi-
nation of different cost functions and stability is guaranteed by the
convex combination, which is close to that desired [12]. The lexico-
graphic programming and logic method are used to prioritize multiple
cost functions and then design multi-objective NMPC controllers
[13–15]. The MPC controller is derived by minimizing the distance of
the cost function to that of the steady-state utopia point and the nomi-
nal asymptotic stability of the NMPC is ensured by the terminal equality
constraint and the assumption of strong duality [16]. Similarly, we have
proposed a utopia-tracking multi-objective NMPC scheme in the dual-
mode framework using the terminal region constraint and control
Lyapunov functions [17].

Different cost functions associated with a certain state region indi-
vidually and a state-dependent switch between the cost functions
have been employed to design the multi-objective NMPC controller
[18]. Stability of the proposedNMPC is ensured by imposing a constraint
to the optimization problem such that if a switch occurs at a certain
sampling time, the optimal value of the current activated cost function
must be smaller than one of the cost functions that are active at
the last time. Moreover, general time-dependent switches between
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different cost functions are exploited to computemulti-objective NMPC
law and the average dwell-time method is used to ensure asymptotic
stability of the proposed NMPC [19]. This means that in average,
switches between different cost functions do not occur very often, i.e.,
the switches are restricted to guarantee the stability of the controller.

In this paper, we consider a class of multi-objective NMPC problems,
where different cost functions to be minimized may be switched and
then activated at any sampling time. This implies that at each sampling
time, one of the cost functions is selected and the cost functions can be
switched arbitrarily. This operation results in a closed-loop switched
system since we switch different NMPC controllers designed by mini-
mizing different cost functions. In order to guarantee recursive feasibil-
ity of the switching NMPC and stability of the closed-loop system, we
use the dual-mode control method [20,21]. In this method, a local con-
trol lawwith some free-parameters is designed by the control Lyapunov
functions (CLFs) concept [22] to enlarge the terminal state set of MPC.
Thus the correction term is computedwhen the states are out of the ter-
minal set and the free-parameters of the local control law are computed
when the states are in the terminal set. We establish the recursive fea-
sibility of the MPC and stability of the closed-loop system in the face
of constraints and arbitrarily switched cost functions. This is a nice result
since one can incorporate arbitrary change in the desired cost functions,
which allows us to take into account a larger class of multi-objective
control problems. The contribution of the paper is then a step forward
in thedesign ofmulti-objectiveNMPC controllers that can take into con-
sideration switches between different cost functions, going beyond the
existing modern tools from switched system theory. Finally, the imple-
mentation of the proposed multi-objective NMPC controller is demon-
strated using a chemical process example of the continuous stirred
tank reactor (CSTR).

2. Problem Setup and Preliminaries

We consider a continuous-time nonlinear system described by

x
�

tð Þ ¼ f x tð Þð Þ þ g x tð Þð Þu tð Þ; t ≥ 0; x 0ð Þ ¼ x0 ð1Þ

where x(t) ∈ X ⊂ Rn is the state at time t, u(t) ∈ X ⊂ Rm is the control
input at time t and state transition mappings f: X → Rn and g:
X → Rn × m with f(0) = 0 and g(0) = 0. Without loss of generality, we
assume that the origin is an equilibrium point of the null-input system.
The states and controls are required to satisfy constant pointwise-in-
time constraints

x tð Þ;u tð Þð Þ∈ Z; t ≥ 0 ð2Þ

for some compact set Z ⊆ X × U. Set Z is assumed to contain the equilib-
rium point as its interior.

Let R≥0 denote the set of non-negative real numbers. Given N stage
cost indices Lj: X × U → R≥0, j = 1,…,N. Define the cost function Jj(x) as

J j x tkð Þð Þ ¼
Z tkþTp

tk
L j x sjtkð Þ;u sjtkð Þð Þds ð3Þ

where number 0 b Tp b ∞ is a prediction horizon, variables x(s|tk) and
u(s|tk) are the values of states and controls at time s predicted at time
tk, respectively, and x(tk) is the state at current time tk, with x(tk|tk) =
x(tk). In standard MPC, the goal is to asymptotically stabilize the origin
of system (1), while minimizing a single performance function Jj(x).
The finite horizon optimal control problem of the standard MPC can
be formulated as

min
u Tp ;tkð Þ

J j x tkð Þð Þ

s:t:
x
�

sjtkð Þ ¼ f x sjtkð Þð Þ þ g x sjtkð Þð Þu sjtkð Þ;
x sjtkð Þ;u sjtkð Þð Þ∈ Z;
x tkjtkð Þ ¼ x tkð Þ; ∀tk ≤ s ≤ tk þ Tp

8<
:

ð4Þ

where u(Tp,tk) is the predictive control profile over the prediction hori-
zon window [tk, tk + Tp] at sampling time tk.

Remark1. In thiswork, the states of system (1) are assumed to be sam-
pled at each sampling time of the time sequence {tk} with tk = t0 + kδ
where the discrete-time index k = 0,1,… and δ N 0 is the sampling pe-
riod. Consequently, the control law obtained by minimizing the cost
function (3) is applied to the continuous-time system (1) in a fashion
of sampling-and-hold with the sampling period δ. For simplicity, let
t0 = 0.

Denote the optimal state and control trajectories obtained by
solving optimization problem (4) as xj⁎(Tp,tk) = xj⁎(s|tk) and
uj
⁎(Tp,tk) = uj

⁎(s|tk) for tk ≤ s ≤ tk + Tp, respectively, where sub-
script j indicates the optimal state and control trajectories ob-
tained by minimizing the jth cost function Jj(x). In this MPC
setup, the MPC law is defined in the usual receding horizon fash-
ion: only the first part of the computed optimal trajectory
uj⁎(s|tk) up to the next sampling time tk + 1 = tk + δ is imple-
mented to system (1), i.e.,

u sð Þ ¼ u� sjtkð Þ; ∀tk ≤ s ≤ tkþ1: ð5Þ

Then the optimization problem (4) is resolved at the next time
tk + 1. Similar to standard MPC, the asymptotic stability of the
closed-loop systems (1) and (5) cannot be guaranteed by the opti-
mality of finite horizon cost functions (3). In addition, the recursive
feasibility of Eq. (4) may not be ensured if the cost functions (3)
are switched.

In this work, we use the dual-mode control approach and control
Lyapunov function technique to achieve the asymptotic stability of the
origin of the closed-loop system, while achieving the recursive feasibil-
ity of problem (4) for arbitrary switches between cost functions (3). In
the following, some well-known notions and results are recalled in
order to present our main results.

Definition 1. [23]

Consider a set S ⊆ Rn and a constrained controller u: S → U. Set S is
called a positively invariant set of the closed-loop system (1) with
u(x) if its solution x(t; x(0),u(x)) ∈ S for any t ≥ 0 and any x(0) ∈ S.

Definition 2. [22]

Consider system (1) and a positive definite function V(x). If V(x)
satisfies

LgV xð Þ ¼ 0⇒ L fV xð Þ ≤ 0; ∀x ≠ 0 ð6Þ

where the Lie derivativesL fVðxÞ ¼ ∂VðxÞ
∂x f ðxÞ, LgVðxÞ ¼ ∂VðxÞ

∂x ½g1ðxÞ ⋯gm

ðxÞ�, and gi(x), i=1,…,m is the ith column of matrix function g(x). Then
V(x) is said to be a control Lyapunov function (CLF) of the system.More-
over, if V(x) → ∞ as ||x||→ ∞, V(x) is a global CLF of the system.

Lemma 1. [24]

Let V(x) be a CLF of system (1). For given numbers D1 N 0 andD2 N 0,
there is a controller u(x):=h(x,μ)
h x;μð Þ ¼ −κ x;μð Þβ xð ÞT ð7Þ

where free-parameters μ = (μ1,μ2) ∈ (0, D1] × (0, D2], α(x) = LfV(x),β(x) = LgV(x), and ‘gain’

κ x;μð Þ ¼
α xð Þ þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α xð Þ2 þ μ2 β xð Þk k4

q
β xð Þk k2

; β xð Þ ≠ 0
0; β xð Þ ¼ 0
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