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Ellipsometry as an indirect optical measurement method requires the use of optical modelling which include
model parameterization. In practice, there are many ways to select a model and its parameters to fit the exper-
imental data. Very often this fact leads to ad hoc decisions, i.e., based on experience or subjective opinion, instead
use of some systematic approaches which provide predictive capability. In this paper we use the Akaike and
Bayesian information criteria to perform optical model selection and its best parameterization to fit a particular
set of ellipsometric data. We demonstrate that this approach accompanied by post hoc study of the inter-
parameter correlations can significantly enhance opticalmodelling, in particularly, the process ofmodel selection
and data interpretation and improve the characterization of multilayered thin-film structures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As a search of the literature points out, Dr. Jellison's 1993 paper on
data analysis in spectroscopic ellipsometry (SE) [1] is one of the most
cited research articles in the area of SE data interpretation (see also
Refs. [2–4]). There he formulated in consecutive order three-phase pro-
cedure of fitting a model to experimental ellipsometric data:

1. Construct amodel by defining the number of layers and their types—
homogeneous or inhomogeneous (graded), isotropic or anisotropic,
with or without interface layers.

2. Select the optical functions for each layer (for instance, as tabulated
data) or parameterize them if the material optical properties are un-
known a priori and need to be determined during characterization.

3. Fit the model, in which a few parameters are allowed to vary, to the
experimental data using appropriatemulti-parameter non-linear op-
timization algorithm and minimizing so-called merit function (or
error function), i.e., the function which determines the quality of fit.

The need for advancedfitting procedures has been long recognized in
the applied-math community. The situation has been well reflected by
Press et al. [5, pp. 498–499]: “…it is not uncommon in fitting data to dis-
cover that themerit function is not unimodal, with a singleminimum. In
some cases, we may be interested in global rather than local questions.
Not, “how good is this fit?” but rather, “how sure am I that there is not
a very much better fit in some corner of parameter space?”… The

important message we want to deliver is that fitting of parameters is
not the end-all of model parameter estimation. To be genuinely useful,
a fitting procedure should provide (i) parameters, (ii) error estimates
on the parameters, and (iii) a statistical measure of goodness-of-fit.
When the third item suggests that the model is an unlikely match to
the data, then items (i) and (ii) are probably worthless. Unfortunately,
many practitioners of parameter estimation never proceed beyond
item (i). They deem a fit acceptable if a graph of data and model “looks
good.” This approach is known as chi-by-eye. Luckily, its practitioners
get what they deserve.” Yet, we believe that these expressive words
are still relevant to the community of ellipsometry users, — especially,
“typical” industrial ellipsometry users as defined by Harland Tompkins
in Ref. [6]; hence, there is a hard need for well-developed strategies in
ellipsometric measurement evaluations.

Various advanced optimization algorithms for evaluation of the
ellipsometric measurements have been already discussed in great details
by Polgár et al. [7–10] (see also, for instance, Ref. [11, pp. 196–203]). For
the purpose of modelling or parameterization many analytical physics-
based and Kramers–Kronig consistent expressions (models) have been
developed which describe various types of materials — amorphous and
crystalline semiconductors and dielectrics, metals, organic films, optical
metamaterials, etc. [12,13]. Parameterization should be accompanied by
sensitivity analyses [14–16]. Sensitivity analysis determines the relative
importance of the parameters and helps to optimize a range of variations
for each sensitive parameter since the efficiency of all optimization algo-
rithms can be greatly improved if the parameter search space has reason-
able bounds. Unfortunately, in general, it seems that there is a lack of
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systematic estimation and validation by all available means of which
model and its parameterization are more adequate to describe the mea-
sured data. The current paradigm has been well remarked by Herzinger
et al. [17]: “When performing a model dependent data analysis, simple
models are preferable to complex ones if the fit quality is the same…
The difficulty is in objectively evaluating the quality of the fit as each
model complication is added to see if the fit really improved. Of course,
if the fit does not get better with increasing complexity, that does not
mean the complex model is necessarily wrong, but it does mean that
one lacks sensitivity to allow a distinction and some other criteria must
be employed.” As a heuristic approach, if toomany unknown parameters
are selected to vary, an overfitting of the spectral data may occur easily,
i.e., small variations in the experimental data may strongly influence
the parameter estimates and predictions from the model become ques-
tionable.We should always bear inmind a famous jest by von Neumann:
“…with four parameters I can fit an elephant, and with five I can make
him wiggle his trunk.” (attributed to John von Neumann by Enrico
Fermi, as quoted by Freeman Dyson in Ref. [18]). As a matter of fact,
Mayer et al. [19] confirmed von Neumann's assertion by reconstructing
an elephantine shape with four complex numbers and even making the
trunkwiggle using the real part of thefifth parameter. At the opposite ex-
treme, an insufficient number of variables or an inflexible/inadequate
model (which is less adapted tomore complicated situations than a flex-
ible model) will produce an underfitting which will also result in unreli-
able predictions. Also, typically, there are a few candidate models which
are physically valid and can be used to fit the measured data. Final selec-
tion from those competing models is usually based on a value of χ2, the
biased or unbiased estimator of the goodness of fit [20], as well as the es-
timations of the cross-correlation coefficients and confidence limits of the
best-fitting parameters. However, as many practitioners already gained
from their experience, it is possible to devise different models, with dif-
ferent or even equal number of adjustable parameters (i.e., equal com-
plexity), which will result in very similar quality of fit. In spite of that,
those models may produce different results when applied to a given set of
measured data and the model's predictions become less accurate. Therefore,
a choice of the model as well as the number of parameters to adequately
represent the data is an important problem which still doesn't have per-
fect solutions.

To address this problem a variety of statistical criteria for model se-
lection and parameter estimation have been derived and applied in var-
ious disciplines, including cosmology, quantum information theory, life
sciences, social sciences, medicine, economics, and numerous industrial
applications. One such long-standing and widespread measure, called
Akaike information criterion (AIC), has been established in the early
1970s [21,22] and it is founded on the information-theoretic approach
[23–25]. Another commonly used statistical criterion is Bayesian infor-
mation criterion (BIC) [26] introduced by Schwarz [27] (also known as
Schwarz or SIC criterion). Both of these methods allow finding a com-
promise between under- and overfitting of experimental data. Before
applying any of these criteria, a set of possible models with different
numbers of parameters needs to be created. In fact, the AIC and BIC pe-
nalize for the addition of parameters, i.e., increasing model complexity,
and selects amodelwhich achieves the best fit withminimal number of
parameters. Both AIC andBIC are relatively easy to use since they are de-
scribed by simple formulas and require only a value of the residual dif-
ference between measured and calculated data which is one of the
outputs of a given model and reflects the overall quality of fit of the
model. An important advantage of using AIC and BIC model-selection
criteria is that they allow to make inferences based not only on model's
goodness of fit but also on parametric complexity of the model. Thus,
the statistical criteria approach provides an objective way to yield rela-
tive rather than absolute ranking of candidate models and identify the
most appropriate one, — the task that has always been ambiguous for
most of the practitioners. But we also should keep in mind that these
criteria do not identify the “true” or “final” model, i.e., if a set of the
models under test contains only inferior models, the AIC or BIC will

select the best one out of the poor models [23, p. 62]. As stated by
George Box, “Remember that all models are wrong; the practical ques-
tion is how wrong do they have to be to not be useful.” [28]. In other
words, anymodel thatwe introduce is considered, at best, only as an ap-
proximation of reality. However, purely statistical model-selection sce-
nario should be applied with some caution since not only statistics but
underlying physics or technological aspects need to be taken into ac-
count in ellipsometric measurement evaluations.

Despite of wide range of fields where the AIC and BIC were applied
for model comparison, those methods so far have not been utilized in
ellipsometry. In this paper we use the Akaike and Bayesian information
criteria to perform optical model evaluation and its best parameteriza-
tion. We show by example the use and interpretation of the results of
AIC and BIC model-selection procedures with a particular set of
ellipsometric data. We also demonstrate that the model-selection ap-
proaches should be supplemented also by some kind of cross-
validation methods, such as inter-parameter correlations study.

2. The information criteria

Let us assume that the experimental data consist of n data points yi
taken at different values of independent variable x, i.e., we have n
pairs of (xi, yi). Now suppose that we can fit those measured data with
m different functional relations (candidate models)f jðxijθÞ; j ¼ 1; :::;m;

where θ is the vector of parameters in the approximating model. If the
residuals are normally distributed with zero mean value and experi-
mental error σ, the quality of fit is quantified by the following measure.

χ2 ¼ 1
2

Xn
i¼1

yi− f j xijθð Þ
� �2

σ2
i

¼ −2 lnLþ C; ð1Þ

where L is the likelihood function and the constant C depends only on
used set of experimental data points and not on the model.

The AIC and BIC are defined as

AIC j ¼ −2 lnLmax; j þ 2p; ð2Þ

BIC j ¼ −2 lnLmax; j þ p lnn; ð3Þ

whereLmax; j is themaximum likelihood of an estimatedmodel j from a
set of candidate models,Mj (j=1,…,m), p is the total number of model
parameters, and n is the number of data points used in the fit [21,22,27].
Despite apparent similarity in the formulas for AIC and BIC, they were
derived within different theoretical frameworks (for brevity the deriva-
tion of AIC and BIC had to be omitted andwe refer the interested reader
for technical details on the information-theoretic and Bayesian ap-
proaches to Refs. [23–25]). Though, both the AIC and BIC measures
have two terms. The first one is a measure of the model lack of fit and
can be reduced by increasing number of parameters in the model. At
the same time, the second term penalizes for the additional parameters
in the model and increases with increasing number of parameters. The
model which gives the minimal AIC or BIC value (score) is considered
as the best fitting model since it minimizes the difference between the
candidate model and the measured data by minimal number of param-
eters. Clearly, the BIC penalizes for the addition of newparametersmore
strictly than the AIC due to the presence of (p ln n) penalty weight term
and, therefore, it tends to select simpler models, i.e., the models with a
smaller number of parameters (since ln n N 2 for any practicable data
sets and if only n= 7 or 8, then BIC≈ AIC). Usually, these both criteria
have shown good agreement on the ranking of candidatemodels which
is fairly surprising since these criteria represent very different ap-
proaches [29]. If, in some instances, the results of model selection
from two criteria disagree, one can have a positive outlook on that fact
as on suggested bounds for the range of acceptable models [30]. There-
fore, for instance, AIC provides an upper bound to the number of
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