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The Stoney equation has been a powerful tool for the thin film community to measure the residual stresses in-
duced in a film through themeasurement of curvature of a film–substrate system. Two of themain assumptions
of the original Stoney equation are that the substrate is much thicker than the film and its material is isotropic in
nature. However, inmajority of the caseswhere the film stress ismeasured from the system curvature, Si wafers
are used as substrates, which are anisotropic in nature. The anisotropic substrate problemwas solved by Nix [1]
for thick substrates. In this paper, amodified version of the Stoney equation is derived for configurationswith thin
anisotropic substrates, specifically for the cases of Si(001) and Si(111) wafers. The same methodology is then
used to extend the Stoney formula to systems with bilayer films on thin substrates.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In a thin film configuration, the film is often stressed to conform to
the substrate, commonly due to epitaxial effects, difference in thermal
expansion coefficients between the film and the substrate materials,
or phase transformations accompanied with volume changes. This
stress causes the system to assume a curvature. The equation that
relates this curvature to the stress in the film is referred to as the Stoney
equation [2].

σ f ¼
Esh

2
s

6 1−vsð Þhf
K: ð1Þ

Here, σf represents the stress in the film, which is assumed to be
uniform and biaxial in nature. Es, hs and νs are the Young's modulus of
elasticity, thickness and the Poisson's ratio, respectively of the isotropic
and linear elastic substrate material. Furthermore, hf represents the
thickness of thefilm and K is the curvature of the film–substrate system.
The system is assumed to deform spherically with a uniform curvature.
It is important to realize that Eq. (1) is obtained by making several
assumptions. These have been highlighted in works by Freund et al.
[3], Freund [4]. Some of the limitations for using Eq. (1) are as listed
below.

1. The thickness of the film–substrate system is much smaller in
comparison to its lateral dimensions.

2. The thickness of the film is negligible in comparison to the thickness
of the substrate.

3. The substrate material is homogeneous, isotropic and linear elastic.
4. The film material is isotropic as well.
5. The system deforms spherically with a uniform curvature.
6. The stress state in the plane of thefilm is isotropic or equibiaxialwith

equal stresses along any two mutually perpendicular directions in
the plane.

7. All strains and rotations are infinitesimal.

1.1. Evolution of the Stoney equation

The very first form of the Stoney formula was proposed in 1909 by
Stoney [5].

σ f h f ¼
Esh

2
s

6R
: ð2Þ

While deriving this expression, Stoney considered the stress state in
the film to be uniaxial because the length of the film is usually much
larger in comparison to itswidth. Itwas realized later that an equibiaxial
stress state in the film is more meaningful because, even though the
length of the system dominates its width, the width is still considerably
large in comparison to its thickness. To incorporate this change, one
simply needs to replace Es with the biaxial modulus Es/(1 − υs) of the
substrate material in Eq. (2), which then results in Eq. (1)

Brenner and Senderoff [6] have relaxed the thin film assumption
(hf≪hs) and derived the stress–curvature relationship. But this paper
still incorporates a uniaxial film stress state and not a biaxial state.
Following this, it was not until 1977 that Thornton and Hoffman [7]
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derived a relation for the non-uniform curvature of a glass slide caused
due to a non-uniform stress in the film, by relaxing another important
assumption of the traditional Stoney equation, that the stress in the
film must be uniform.

The first appearance of the Stoney equation as given in Eq. (1) is in a
paper by Flinn et al. [2]. Two years later, Nix [1] proposed results for con-
figurations which use single crystal silicon wafers as substrates. Freund
et al. [3] extended the Stoney equation for systemswith thin and elasti-
cally isotropic substrates or those undergoing large deformations. Re-
sults of this paper show significant differences from the traditional
Stoney equation. Janssen et al. [8] have derived the Stoney equation
for the case of a thick anisotropic substrate using a force and moment
equilibrium approach assuming spherical deformation. For Si(001) wa-
fers, the stress–curvature relation is given by

σ f h f ¼
h2s

6 sSi11 þ sSi12
� �

R
: ð3Þ

For Si(111) wafers, the stress–curvature relation is given by

σ f h f ¼
6

4sSi11 þ 8sSi12 þ sSi44

 !
h2s
6R

; ð4Þ

where sij
Si are elements of the compliance matrix of Si.

1.2. Scope of the paper

In this paper, a modified version of the Stoney equation is derived
considering the substrate to be thin and made of single crystal silicon
wafers (specifically Si(001) and Si(111)). These equations are derived
from the equilibrium requirement that the potential energy of the
system must be stationary. The results are compared with Eqs. (3) and
(4) on incorporating back the thin film assumption that hf≪hs. The
same methodology is then applied to configurations with a bilayered
film whose thickness is comparable to that of the substrate, and a
relation for the curvature of the system is derived.

2. Mathematical formulation and derivation

In this paper, discussion is based on a circular geometry of the substrate and film, for the ease of analytical development. It is to be noted that the
resultswill be identical for other shapes of the systemaswell, in the small deformation regime. In the linear elastic deformation regime, the curvature
of the configuration is spherical with a nearly uniform curvature throughout the substrate [9]. In this work, the film material is considered to be
homogeneous and isotropic with a uniform distribution of stress through the thickness of the film material.

Fig. 1 shows the cross sectional view of the film–substrate configuration. The radius of the circular system is Rwhile hf and hs represent the thick-
nesses of the film and substrate, respectively. A cylindrical polar coordinate system (r,θ,z) is chosen with the origin lying at the intersection of the
mid-plane of the substrate and the axis of symmetry of the system. The deformation in the system is measured using this coordinate system.

2.1. Modified Stoney equation for thin Si(001) wafer substrate

The most commonly used substrate for curvature measurements through the stress curvature relationships is made from Si(001) wafer. In this
wafer, the [001] direction is perpendicular to the plane of the wafer. This direction coincides with the z-axis of the deformation coordinate system.
Furthermore, the r and θ directions of the coordinate axes of the deformation can be represented by twomutually orthogonal axes in the plane of the
single crystal wafer. Hence, in this case the axes of deformation also coincide with the crystallographic axes of the Si(001) wafer. The stiffnessmatrix
that relates the stress and strain tensors, has only three distinct components for cubic crystals, which can be written as [8].
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where σij: components of stress tensor, cij: elastic stiffness constants of Si and ϵij: components of strain tensor.
In this work, we consider a radially symmetric deformation because of circular substrate geometry and uniformity in film stress. The axially

symmetric deformation coupled with the assumption that the out of plane stresses are negligible leaves only σrr and σθθ as the non zero stress
components in the film and the substrate. The elastic strain energy density is given by

U r; zð Þ ¼ 1
2

X
σ iϵið Þ; ð6Þ

Fig. 1. Circular film deposited on a circular anisotropic substrate.
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