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Calculation of the index of refraction of graphite–silica composites has been performed using Bruggeman's the-
ory for randomly oriented nano-graphite grains in silica. Subsequently the normal incidence reflectance from
graphite–silica composite/aluminium and anti-reflection coating/graphite–silica composite/aluminium struc-
tures was performed using the transfer matrix formalism. The solar performance (absorptance, emittance, and
efficiency) of the graphite–silica composite/aluminium structures is calculated with respect to composition
and thickness of the graphite composite layer (and presented in the form of contour plots) and is compared
with experimental data. We show that the combined contour plots are consistent with experimental data only
within a small range of volume fraction and thickness of the composite layer. Further, we present analytic rela-
tions for the near optimal index of refraction and thickness of the anti-reflection coating for the graphite–silica
composite/aluminium structure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spectral selective solar absorbers (SSSAs) can be achieved in several
ways, where one of them provides an advantage in flexibility and pro-
duction costs and is produced by using a solar absorbing layer on top
of a highly reflective metal surface (tandem structure) [1]. Theoretical
calculations predicted early that single layer absorbers on metals can
have high fraction of solar irradiance absorbed, i.e. absorptance (α),
with small emittance (β) values as long as the refractive index and ex-
tinction coefficient values are within certain limits [2]. One flexible
way of controlling the optical properties of materials is by incorporating
inclusions of one phase, e.g. ametal, into another, e.g. a ceramic, forming
a composite, which were used already in commercial SSSAs in the 70s,
e.g. “black chrome” and nickel-pigmented anodic Al2O3 [3]. While car-
bon and graphite layers on metals were investigated in the 70s as po-
tential SSSA candidates [4,5], it is only recently that experimental
work on carbon based composite tandem structures have been realised
that show high absorptance, although the dependence of solar perfor-
mance of the SSSA, e.g. efficiency (η), on themicrostructure and compo-
sition of the composite was not revealed [6,7]. In this workwewill use a
theoretical framework for investigating in more detail the structural
and compositional requirements for optimisation of η of graphite–silica
composite/Al SSSAs.

2. Method

The first part of this sectionwill describe themethodology for determin-
ing the complex dielectric constant (ε) of the graphite–silica composite
and the second part will describe how the reflectivity and associated α,
β and η values of composite/metal structures are calculated in a similar
way as previous work [8].

The optical properties of composites attracted the interest of
Maxwell Garnettmore than a century ago as a keystone for the interpre-
tation of the colour of glasses with metal inclusions. Noteworthy, the
Maxwell Garnett (MG) theory assume that inclusions are completely
surrounded by the matrix, which is plausible when the volume fraction
(f) of the inclusions is significantly smaller than thematrix, but becomes
less probable as f increases. This suggests that MG theory is unlikely to
give a reliable description of the optical properties of composites for
high f values in the absence of microstructural information. However,
the Au–silica system, which exhibits a transition from a state where
the metal is included to a state where the metal can be considered the
medium, has been modelled well for 0 b f b 1 using MG theory where
below and above a threshold in f (~0.4) Au and silica, respectively,
was the phase of inclusions [9].

An alternative to this theory was developed by Bruggeman, which is
applicable for 0 b f b 1 and is likely to give a better description for high
f-values in the absence of microstructural information. In this work, we
shall use the Bruggeman theory to calculate the optical properties of
graphite–silica composite/Al SSSAs.

The Bruggeman theory assumes that each phase may be considered
to be in a matrix with an effective dielectric constant εc [10]; hence the
polarisation of a sphere of the i:th phase is given by (using the
Claussius–Mossotti relation):
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Pi ¼ Elocai
3 εi−εcð Þ= εi þ 2εcð Þ ð1Þ

where Eloc is the local field and ai is the radius. If Eloc ~ E (themacroscop-
ic applied electric field) the total polarisation, (P), P=∑PiNi (where Ni

is the concentration of i-type spheres) must equal zero, which gives the
following equation: ∑ f i (εi − εc) / (εi + 2εc) = 0. This equation is
solved with respect to εc, where the summation is for i = 1,2,3.. s,
where s is the total number of phases. It should be noted that for low
f, MG and Bruggeman theory (for a binary phase) yield nearly identical
results, while at larger f a significant difference may develop (as for the
Ag–silica composites) [11,12].

The value of ε of a material is a property that is either a scalar (for a
macroscopic isotropic solid) or a tensor for a non-isotropic solid. The
physical properties of graphite, a solid with a single symmetry axis
(c-axis), are in general anisotropic, including its ε-value (εg). Thus,
εg and εg||, which are complex numbers with a real and an imaginary
part, describe the polarisability when the electric field is oriented
perpendicular and parallel to the c-axis, respectively. The depen-
dence of the dielectric constant of graphite on wavelength used in
this work was obtained from tabulated values [13]; it should be
noted that while experimental determination of εg has been obtained
accurately over the full wavelength range of interest in this work, re-
ported experimental εg|| values vary significantly depending on experi-
mental procedure [14]. The uncertainty in the εg|| values from optical
spectroscopy is mainly due to problems of obtaining a smooth surface.

In order to emulate polycrystalline graphite, where grains are ran-
domly oriented, εg and εg|| need to be mixed in proper proportions. Pre-
vious work suggest that the optical properties of pure polycrystalline
graphite material (100 nm b λ b 500 nm) are well described using the
Bruggeman theory and with volume fractions of 2/3 and 1/3 for the as-
sociated εg and εg|| values, respectively [15]. Thuswith these proportions,
themagnitude of uncertainty in εg|| (as discussed previously) will have a
small impact on the uncertainty of the effective ε-value of a poly-
graphite composite since εg is much larger than εg||. Thus, this work
reports on the calculations using Bruggeman theory for mixtures of εg
and εg|| in the proportions 2/3 and 1/3, respectively, dispersed in silica
(εSiO2) for 0.025 b f b 1. The wavelength dependence of the dielectric
constant of silica was obtained from two references; in the range of
0.2 to ~1 μm [16] and from ~1 to 50 μm [17]. Finally, the index of refrac-
tion (nc) and extinction coefficient (kc) of the composite was readily
calculated based on the complex εc values [13].

Once the optical properties with respect to wavelength are obtained
for all materials (including aluminium [18]) involved the calculation of
the reflectivity was performed using transfer matrix formalismwhich is
a well established method [19] and below we will shortly describe the
procedure following the notation in Prentice [20].

The transfermatrix formalism assumes that forward, F, (in the direc-
tion of the incident light) and backward, B, electromagnetic waves, with
amplitude E, propagate through amultilayer consisting of M-number of
layers and M + 1 number of interfaces.

The refraction of the electromagnetic waves at an interface is
described by relating two field amplitudes on the left (L) with two on
the right side of the interface by a two dimensional tensor. Thus, we
have for the refractive matrix at the m:th interface:

EL Fm
ELBm

" #
¼ 1

tm;mþ1
� 1 rm;mþ1

rm;mþ1 1

� �
� ERF

m

ERBm

" #
ð2Þ

where rm,m + 1 and tm,m + 1 are the Fresnel reflection and transmission
coefficients, respectively, of the m:th interface. Here light is incident
from the m:th layer towards the interface bounded by the m + 1:th
layer. Further, each layer is associated with a matrix which describes
the attenuation of right and left goingwaveswithin that layer according

to:
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where δm = 2πNmtm / λ and Nm is the complex index of refraction of
layer m, tm is the thickness of layer m and λ is the wavelength. If the
two dimensional tensors in Eqs. (2) and (3) above are denoted by Im
and Lm then the relationship between the incident (E1LF) and reflected
(E1LB) field amplitudes and those at the second interface (m = 2, E2LF

and E2
LB) for light incident on the first layer is:

EL F1
ELB1

" #
¼ I1 � L1 � EL F2

ELB2

" #
: ð4Þ

Further, in order to relate E1LF and E1
LB with the fields on the right side

of the M+ 1 interface (where layer M+ 1 is the substrate or vacuum)
the process is repeated M-number of times and with an additional
refractive matrix for IM + 1:

EL F1
ELB1

" #
¼ I1 � L1 � I2 :::::IM � LM � IMþ1

ER F
Mþ1

ERBMþ1

" #
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� �
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" #
: ð5Þ

Note, EM + 1
RF is the field amplitude of the transmitted wave. Further,

if there is no light incident from the M + 1 layer (i.e. assuming that
M + 1 layer is either vacuum or a dissipative substrate) towards the
left then EM + 1

RB = 0.
Thus the reflection (R) is calculated by:

R ¼ S21
S11

� Scc21
Scc11

ð6Þ

where the superscript cc indicates the complex conjugate. It should be
mentioned that the formalism is also applicable to materials described
by a complex index of refraction [19] although for rough interfaces the
refractive matrix is modified [21].

Finally the α, β, and η were calculated according to [22]:

α ¼

Z2
0:2

IS λð Þ 1−R λð Þ½ �dλ

Z2
0:2

IS λð Þdλ
ð7Þ

β ¼

Z50
2

IP λð Þ 1−R λð Þ½ �dλ

Z50
2

IP λð Þdλ
ð8Þ

η ¼ α−εσT4=I0 ð9Þ

Above IS and IP is the solar spectrum for air mass 1.5 [23] and black
body emittance described by Planck's distribution law, respectively.
Further, T is the absolute surface temperature (here all calculations per-
formed for T=373K),σ is the Stefan–Boltzmann's constant and I0 is the
solar power/unit area (i.e., the integrated solar spectrum ~900 W/m2).
Note that all the Eqs. (2)–(10) above are valid for normal incidence
and emittance of electromagnetic radiation. The contribution of non-
normal incidence and emittance has an effect on R and consequently
on α, β and η. The non-normal spectral emittance values may differ sig-
nificantly from those calculated/measured using the normal directional
geometry, in particularly in the range of λ ~ 11 μm [24].
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