Contents lists available at ScienceDirect

Thin Solid Films

journal homepage: www.elsevier.com/locate/tsf

Preparation of cubic and tetragonal Li₇La₃Zr₂O₁₂ film by metal organic chemical vapor deposition

CrossMark

H. Katsui^{*}, T. Goto

Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan

ARTICLE INFO	A B S T R A C T
Available online 13 December 2014	$Li_7La_3Zr_2O_{12}$ films were prepared on polycrystalline Al_2O_3 by metal organic chemical vapor deposition. The effect
Keywords:	Tetragonal Li ₇ La ₃ Zr ₂ O ₁₂ film formed at $T_{sub} = 1023 - 1173$ K. The morphology changed from small-sized granular,
Lithium lanthanum zirconate	polygonally faceted granular to flat and smooth surface with increasing T_{sub} . Cubic Li ₇ La ₃ Zr ₂ O ₁₂ film with fine
Cubic structure	granular surface was deposited at $T_{\rm oub} = 1173 - 1223$ K. The deposition rates of the cubic and tetragonal
Tetragonal structure	I_{i-1} , I_{i-2} , I_{i-3} , I_{i-1} , I_{i-3} ,
Metal organic chemical vapor deposition	Live 3212012 minis were approximately 20 µm m ⁻¹ , which were one to two orders of magnitude greater than
Deposition rate	those of $L_{17}L_{32}L_{12}O_{12}$ nims by pulsed laser deposition.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lanthanum zirconate

All-solid-state lithium-ion batteries have attracted much attention owing to strong safety requirements. Solid-state electrolyte films with high ionic conductivity are necessary for miniaturizing electronic devices; hence, Li-ion-conducting solid electrolytes require high ion conductivity and electrochemical stability against the Li metal anode. Sulfide compounds, such as Li_{3.25}Ge_{0.25}P_{0.75}S₄ and Li₂S- P_2S_5 glass, with Li-ion conductivity greater than 10^{-3} S cm⁻¹ have been developed as electrolytes [1-4]. Oxide electrolytes, on the other hand, offer high chemical stability in air. Li- β alumina [5], perovskitetype Li_{0.5}La_{0.5}TiO₃ [6], and glass-ceramic Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ [7] exhibit high lithium-ion conductivity of 10^{-3} – 10^{-4} S cm⁻¹ at room temperature. The Li-ion conductivity of these compounds is applicable for all-solid-state batteries; however, the Li metal anode would reduce the oxide electrolytes [8]. Among oxide electrolytes, garnettype Li compounds, such as $Li_5La_3M_2O_{12}$ (M = Nb, Ta, Hf) and $Li_6ALa_2M_2O_{12}$ (A = Ca, Sr, Ba; M = Nb, Ta) [9–11], exhibit Li-ion conduction and good stability in contact with Li metal, e.g., Li₆BaLa₂Ta₂O₁₂ shows the highest Li-ion conductivity of 4×10^{-5} S cm⁻¹. However, such conductivities are insufficient for high power density solid state batteries [12].

Murugan et al. have reported garnet-type Li₇La₃Zr₂O₁₂. This compound has a high conductivity of 3×10^{-4} S cm⁻¹ and a wide potential window [8,13,14]. They fabricated cubic Li7La3Zr2O12 by solid-state reaction at 1503 K. The structure of cubic Li₇La₃Zr₂O₁₂, with a space group of Ia3d (no. 230) and a lattice parameter of 1.29827(4) nm, was determined by single-crystal X-ray diffraction [15]. Awaka et al. synthesized tetragonal Li₇La₃Zr₂O₁₂ by solid-state reaction at 1253 K and reported a space group of $I4_1/acd$ (no. 142) [16]. It is known that the Li-ion conductivity of cubic Li₇La₃Zr₂O₁₂ is two orders of magnitude higher than that of the tetragonal phase at room temperature.

Li₇La₃Zr₂O₁₂ bulk forms have been fabricated by solid-state reaction and sol-gel process [8,12-20]. However, there are few publications regarding Li₇La₃Zr₂O₁₂ films [21,22]. Tan and Tiwawi fabricated Li₇La₃Zr₂O₁₂ film on SrTiO₃ (100) and sapphire (0001) single crystals by pulsed laser deposition (PLD) and subsequent post-annealing [21], whereas Kim et al. reported the epitaxial growth of Li₇La₃Zr₂O₁₂ films on garnet Gd₃Gd₅O₁₂ single crystals by PLD [22]. Metal-organic chemical vapor deposition (MOCVD) is a versatile technique for fabricating films at high deposition rates and moderate vacuum conditions (several hundred Pa to even atmospheric pressure). Moreover, the morphology and phase formation of the thin films is well controlled, and thus, it is well suited for producing the wide-ranging designs of all-solid-state thin-film batteries. We have fabricated LiCoO₂ cathode films with highly orientated textures on polycrystalline and single-crystal substrates by MOCVD at high deposition rates [23–25]. To date, there are no reports on the fabrication of Li₇La₃Zr₂O₁₂ films on poly-crystalline substrates and on the formation of the tetragonal phase. In this study, cubic and tetragonal Li₇La₃Zr₂O₁₂ films were prepared on poly-crystalline Al₂O₃ by MOCVD, and the effect of deposition temperature (T_{sub}) on the phase formation, morphology and deposition rates was investigated.

2. Experimental

Li-La-Zr-O films were prepared in the vertical cold-wall type CVD chamber shown in Fig. 1. Li(DPM) (dipivaloylmethanato-

^{*} Corresponding author.

Fig. 1. Schematic of a cold wall type CVD apparatus.

lithium), La(DPM)₃ (tri-dipivaloylmethanato-lanthanum) and Zr(DPM)₄ (tetrakis-dipivaloylmethanato-zirconium) were used as precursors. The vaporization temperatures of Li(DPM), La(DPM)₃ and Zr(DPM)₄ were 555–560, 517–519 and 517–519 K, respectively. The molar ratios of the Zr source vapor to Li ($R_{\text{Li/Zr}}$) and Zr to La ($R_{\text{La/Zr}}$) were 4.0 and 1.0, respectively. The source vapor was carried into the CVD reactor by Ar gas. Oxygen gas was separately supplied via a double-tube nozzle and mixed with the source vapor above the substrate. The total gas flow rate was fixed at 4.0×10^{-6} m³ s⁻¹. A polycrystalline Al₂O₃ substrate (99.5% purity; 10 mm × 10 mm × 1 mm; Japan Fine Ceramics Co.) was used as a substrate. The Al₂O₃ substrate was set on a hot stage, and T_{sub} was monitored with a thermocouple. Li–La–Zr–O films were deposited at $T_{\text{sub}} = 923-1273$ K. The total pressure in the CVD chamber (P_{tot}) was fixed at 400 Pa. The experimental conditions are summarized in Table 1.

Table	1
-------	---

Deposition conditions of Li-La-Li-O minis	Deposition	conditions	of Li-La-	-Zr-O	films.
---	------------	------------	-----------	-------	--------

Vaporization temperature			
Li(dpm)	555–560 K		
La(dpm) ₃	517–519 K		
$Zr(dpm)_4$	517–519 K		
Ar carrier gas flow rate			
For Li Li(dpm)	$0.67 imes 10^{-6} \text{ m}^3 \text{ s}^{-1}$		
For La(dpm) ₃	$0.67 \times 10^{-6} \text{ m}^3 \text{ s}^{-1}$		
For $Zr(dpm)_4$	$0.67 \times 10^{-6} \text{ m}^3 \text{ s}^{-1}$		
O ₂ gas flow rate	$1.33 \times 10^{-6} \text{ m}^3 \text{ s}^{-1}$		
Substrate	Mirror-polished Al ₂ O ₃		
	Sintered SrRuO ₃		
Substrate temperature (T_{sub})	923–1273 K		
Total pressure (P _{tot})	400 Pa		
Deposition time	900 s		

The phases and orientation of Li–La–Zr–O films were analyzed by X-ray diffraction with Cu K α radiation (θ –2 θ XRD; RAD-2C, Rigaku). The surface and cross-sectional morphologies were observed by scanning electron microscopy (SEM; S3100-H, Hitachi) at 10 kV acceleration voltage. The chemical state and composition were examined by X-ray photoelectron spectroscopy (XPS; AXIS ultra, Kratos) with Al K*a* radiation operated at 15 kV and 10 mA with the analyzing area of 110 µm in diameter. The surface of the film was sputtered by Ar⁺ at 4 keV for 2.7 ks with the sputtering rate of 0.115 nm s⁻¹ to remove carbonate formed on the top surface of the films due to exposure to air after the deposition. The deposition rate was calculated from the deposition time and thickness.

3. Results and discussion

Fig. 2 shows the effect of T_{sub} on the XRD patterns of Li–La–Zr–O films. La₂Zr₂O₇ film with the pyrochlore structure formed at T_{sub} = 973 K, as shown in Fig. 2(a). This film showed a strong (222) peak. The crystal structure of La₂Zr₂O₇ belongs to the pyrochlore type, comprising six-coordinated Zr ions and eight-coordinated La ions that forms a network of corner-shared octahedra of ZrO₆ with the dodecahedra of LaO₈ filling the interspaces [26]. The (111) plane forms a network of chains of edge-sharing ZrO₆ and LaO₈ alternately aligned in the direction to $\langle 1\overline{10} \rangle$. As T_{sub} increased to 1073 K (Fig. 2(b)), tetragonal Li₇La₃Zr₂O₁₂ formed, which was a Li-containing oxide having the La/Zr

Fig. 2. XRD patterns of Li–La–Zr–O films at *T*_{sub} = 973 (a), 1073 (b), 1223 (c) and 1273 K (d).

Download English Version:

https://daneshyari.com/en/article/1664839

Download Persian Version:

https://daneshyari.com/article/1664839

Daneshyari.com