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Ellipsometric scatterometry has gainedwide industrial applications in semiconductormanufacturing after ten years
of development. Among the various types of ellipsometers, Mueller matrix ellipsometer (MME) can provide all 16
elements of the 4 by 4Muellermatrix, and consequently,MME-based scatterometry can acquiremuchmore useful
information about the sample and thereby can achieve better measurement sensitivity and accuracy. In this paper,
the basic principles and instrumentation ofMME are presented, and the data analysis inMME-based nanostructure
metrology is revisited from the viewpoint of computational metrology. It is pointed out that MME-based
nanometrology is essentially a computational metrology technique by modeling a complicated forward process
followed by solving a nonlinear inverse problem. Several case studies are finally provided to demonstrate the
potential of MME in nanostructure metrology.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Nanomanufacturing is referred to as the manufacturing of products
with feature dimensions at the nanometer scale. It is an essential bridge
between the newest discoveries of fundamental nanoscience and
real-world products by nanotechnology. One critical challenge to the

realization of nanomanufacturing is the development of necessary in-
strumentation and metrology at the nano-scale, especially the fast,
low-cost, and non-destructive metrology techniques that are suitable
in high-volume nanomanufacturing [1]. Although scanning electron
microscopy (SEM), atomic force microscopy (AFM), or transmission
electron microscopy (TEM) can provide high precision data, they are,
in general, time-consuming, expensive, complex to operate, and prob-
lematic in realizing in-line integrated measurement.

Ellipsometry is an optical metrology technique that utilizes polar-
ized light to characterize thickness of thin films and optical constants
of both layered and bulk materials [2]. Since the year of around 2000,
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spectroscopic ellipsometry (SE) was introduced to monitor the critical
dimension (CD) of grating structures in semiconductor manufacturing
[3–5]. Comparedwith SEM, AFM, and TEM, this technique, also referred
to as optical scatterometry or optical critical dimension metrology, has
achieved wide industrial applications after ten years of development
due to its attractive advantages, such as low cost, high throughput,
and minimal sample damage [6,7].

The application of ellipsometry for nanostructure metrology heavily
relies on two key issues [8], i.e., the collection of a precise measured
signature of a diffractive nanostructure as well as the fast and accurate
reconstruction of the structural profile from the measured signature.
The reconstruction of the structural profile from themeasured signature
is a typical inverse diffraction problem with an objective of finding a
profile whose theoretical signature can best match the measured one.
The solution of the inverse problem usually employs two kinds of
methods [9], namely the nonlinear regression method [10,11] and the
library search method [12–14]. Both of these two approaches involve
the establishment of a theoretical diffraction model that relates the
optical signatures and the structural profiles associated with these sig-
natures. Many methods have been proposed to solve this diffraction
model [15], of which the rigorous-coupled wave analysis (RCWA)
[16–18] is the most common approach in optical scatterometry. The
collection of the measured signature involves the development of a
specific ellipsometer. Among the various types of ellipsometers,Mueller
matrix ellipsometer (MME), also known as Mueller matrix polarimeter,
can provide all 16 elements of the 4 × 4Mueller matrix in eachmeasure-
ment. Comparedwith conventional ellipsometric scatterometry,which at
most obtains two ellipsometric angles, MME-based scatterometry can
acquire much more useful information about the sample, such as anisot-
ropy and depolarization. Therefore, MME is expected to be a powerful
tool for nanostructure metrology in high-volume nanomanufacturing.

Several researchers have investigated theMME-based nanostructure
metrology over the past years [19–25]. Novikova et al. implemented
MME in different azimuthal angles to characterize one-dimensional
diffraction gratings [19,20]. It was shown that theMuellermatricesmea-
sured in proper conical diffraction configurations may help decouple
some of the fitting parameters. We further proposed a measurement
configuration optimizationmethod forMME tofindanoptimal combina-
tion of the incidence and azimuthal angles, with which more accurate
measurement can be achieved [21]. Kim and Li et al. investigated the
possibility of measuring overlay and grating asymmetry with MME [22,
23]. Their research indicated that MME had good sensitivity to both the
magnitude and direction of overlay and profile asymmetry, while con-
ventional ellipsometric scatterometry had difficulty in distinguishing
the direction of the above features. In our recent work, noticeable depo-
larization effects were observed from the measured Mueller matrices of
nanoimprinted resist patterns [24,25].We found that improved accuracy
can be achieved for the line width, line height, sidewall angle, and resid-
ual layer thickness measurement after taking depolarization effects into
account.

In this paper, we will review the principles and potential of MME in
nanostructure metrology to provide a complete picture of this tech-
nique. We will first introduce the basic principles and instrumentation
of MME, with a demonstration of the development of a broadband
dual rotating-compensator Mueller matrix ellipsometer in our lab.
Then wewill revisit the data analysis in MME-based nanostructure me-
trology from the viewpoint of computational metrology [26,27], and
point out that MME-based nanometrology is essentially a computation-
al metrology technique by modeling a complicated forward process
followed by solving a corresponding nonlinear inverse problem. Finally,
we will present several case studies in MME-based nanostructure
metrology, including the measurement of e-beam patterned grating
structures, the measurement of nanoimprinted resist patterns, the
measurement of lithographic patterns with line edge roughness
(LER), and the measurement of etched trench nanostructures that
are typically encountered in the manufacturing of flash memory

storage cells, to demonstrate the capability of MME in nanostructure
metrology.

2. Fundamentals

2.1. Basic principles and instrumentation of MME

The measurement of Mueller matrix involves a series of K (K ≥ 16)
flux measurements made by illuminating the sample with different
polarization states and analyzing the exiting beam with different ana-
lyzers. The k-thmeasuredflux gk is related to the sampleMuellermatrix
M by [28]

gk ¼ AT
kMSk ¼ Sk⊗Akð ÞTm; 1≤ k≤ K; ð1Þ

where the symbol⊗ denotes the Kronecker product, the superscript “T”
denotes the transpose. Sk is the k-th incident polarization state produced
by the polarization state generator (PSG), and Ak is the k-th exiting polar-
ization state produced by the polarization state analyzer (PSA). m is a
16 × 1 Mueller vector obtained by reading the sample Mueller matrix
elements in the lexicographic order, i.e., m = [M11, M12, M13, M14, M21,
M22,…,M44]T. Eq. (1) can be written in a matrix form as

G ¼ Dm; ð2Þ

whereG is aK×1columnvectorwith the k-th element being gk, andD is a
K × 16 matrix with the k-th row vector being (Sk ⊗ Ak)T. According to
Eq. (2), the sample Mueller matrix can be measured by

m ¼ DþG; ð3Þ

where D+ = (DTD)−1DT is the Moore–Penrose pseudo-inverse of matrix
D. Eq. (3) is the basic and general principle of sample Mueller matrix
measurement for any type of Mueller matrix ellipsometers, such as the
Mueller matrix ellipsometer based on the coupled ferroelectric liquid
crystal cell [29,30], the dual rotating-compensator [31,32], or the four
photoelastic modulators [33]. The dual rotating-compensator configura-
tion was adopted in the development of the Mueller matrix ellipsometer
in our lab.

Specifically, as schematically shown in Fig. 1, the basic system layout
of the dual rotating-compensator Mueller matrix ellipsometer in order
of light propagation is PCr1(ω1)SCr2(ω2)A, where P and A stand for the
polarizer and analyzer, Cr1 and Cr2 refer to the 1st and 2nd rotating
compensators, and S stands for the sample. The fast axis angles C1 and
C2 of the 1st and 2nd compensators rotate synchronously at ω1 = 5ω
and ω2 = 3ω, where ω is the fundamental mechanical frequency. The
Stokes vector Sout of the exiting light beam can be expressed as the
following Mueller matrix product [25,32]

Sout ¼ MAR Að Þ½ � R −C2ð ÞMC2 δ2ð ÞR C2ð Þ½ �M R −C1ð ÞMC1 δ1ð ÞR C1ð Þ½ � R −Pð ÞMPR Pð Þ½ �Sin;
ð4Þ

where Mi (i = P, A, C1, C2) is the Mueller matrix associated with each
optical element. R(α) is the Mueller rotation transformation matrix for
rotation by the angle α [α = P, A, C1, and C2] that describes the corre-
sponding orientation angle of each optical element. δ1 and δ2 are the
wavelength-dependent phase retardances of the 1st and 2nd rotating
compensators. By multiplying the matrices in Eq. (4), we can obtain
the following expression for the irradiance at the detector (proportional
to the first element of Sout) [32]

I tð Þ ¼ I00M11 a0 þ
X16
n¼1

a2n cos 2nωt−ϕ2nð Þ þ b2n sin 2nωt−ϕ2nð Þ½ �
( )

¼ I0 1þ
X16
n¼1

α2n cos 2nωt−ϕ2nð Þ þ β2n sin 2nωt−ϕ2nð Þ½ �
( )

;

ð5Þ
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