ELSEVIER

Contents lists available at ScienceDirect

Thin Solid Films

journal homepage: www.elsevier.com/locate/tsf

Comparison of high-κ Nd₂O₃ and NdTiO₃ dielectrics deposited on polycrystalline silicon substrates

Chyuan Haur Kao ^a, Hsiang Chen ^{b,*}, Yu-Cheng Liao ^a, Jin Zhou Deng ^b, Yu Cheng Chu ^b, Yun Ti Chen ^b, Hung Wei Chang ^b

- ^a Chang Gung University, Kuei-shan, Taiwan, ROC
- b National Chi Nan University, Puli, Taiwan, ROC

ARTICLE INFO

Available online 14 March 2014

Keywords: Nd₂O₃ NdTiO₃ Polycrystalline silicon Annealing Dielectric

ABSTRACT

High- κ Nd₂O₃ and NdTiO₃ films deposited on polycrystalline silicon treated at various post-rapid thermal annealing temperatures were fabricated as high- κ gate dielectrics. The NdTiO₃ samples demonstrated a higher effective dielectric constant, lower leakage current, higher breakdown electric field, smaller gate voltage shift, and lower electron trapping rate than the high- κ Nd₂O₃ polyoxide dielectric samples. Annealing effects were analyzed using electrical measurements and multiple material analysis techniques included X-ray diffraction and atomic force microscopy. Incorporating Ti content into Nd₂O₃ dielectrics resulted in noticeable improvements in electrical performance and material quality. Results indicate that NdTiO₃ dielectrics show promise for future high- κ dielectric electronic device applications.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As the size of traditional SiO₂ gate oxide has shrunk, reliability issues have become a concern due to the increased potential of dielectric breakdown caused from ultrathin gate dielectric layers [1,2]. In recent years, lanthanide oxides such as Er₂O₃ [3], Sm₂O₃ [4], and Gd₂O₃ [5] have emerged to replace SiO₂ as the gate oxide for their high dielectric constant compared to silicon oxide (high-k) and large band offset with silicon. The main advantage of a high-k dielectric is an equivalent capacitance value in a physically thicker film so that the possible dielectric breakdown and large leakage current can be avoided [6]. However, reliability problems arise, such as interfacial defects that include dangling bonds and traps between the high-k oxide and the substrate. Therefore, it is worthwhile to investigate high performance dielectrics comprised of various material compositions, alternative processes, and treatments. As for complementary metal-oxide-semiconductor applications, the single Si crystalline substrate is more preferable [7] but for the thin film transistor (TFT) applications, the polysilicon substrate is more applicable [8] because the polyoxide substrate exhibits low conductivity, high breakdown, and high-charge-to-breakdown properties [9]. In this study, the interdielectric polyoxide with potential TFT applications has been used to replace the traditional single-crystal Si substrate.

In this study, Nd_2O_3 was combined with Ti atoms to form a $NdTiO_3$ high- κ dielectric layer on a polyoxide substrate [10]. Titanium oxide was chosen because it has a very high- κ value of 80, and incorporating Ti atoms could potentially increase the dielectric strength and suppress low- κ oxide formation [11]. As the film was further treated with post rapid thermal annealing (RTA), unwanted suboxides could be eliminated, thereby improving dielectric quality. After the material quality is improved, leakage current decreases, while breakdown electric field and voltage both increase. In our fabrication, we sputtered a high- κ $NdTiO_3$ dielectric on top of a polyoxide substrate. To examine improvements caused by the addition of Ti atoms and annealing, material analyses including X-ray diffraction (XRD) and atomic force microscopy (AFM) were performed. Electrical characterizations were conducted to examine the dielectric performance.

2. Experimental

Nd $_2$ O $_3$ and NdTiO $_3$ polyoxide capacitors were fabricated on n^+ -polysilicon/oxide/p-type silicon substrates. With the addition of Ti into Nd $_2$ O $_3$, the high- κ Nd $_2$ O $_3$ and NdTiO $_3$ polyoxide capacitors were compared. At first, the p-type silicon wafer was cleaned with a regular RCA cleaning process and dipped in a diluted hydrofluoric acid solution to remove the native oxide. An oxide layer of 600 nm in thickness was grown by thermal oxidation on the p-type silicon. Then, a polysilicon film of 300 nm in thickness was deposited at 625 °C by a low pressure chemical vapor deposition system. The polysilicon/oxide/p-type silicon

^{*} Corresponding author. Tel.: +886 49 291 0960; fax: +886 49 2912238.

E-mail address: hchen@ncnu.edu.tw (H. Chen).

substrates were annealed at 950 °C to activate the substrate and reduce resistance. For the Nd₂O₃ capacitor, a Nd₂O₃ film 27 nm in thickness was deposited by RF sputtering in diluted O_2 (Ar/ $O_2 = 12.5/12.5$) with an ambient sputtering power of 150 W and an operating pressure of $\sim 1.5 * 10^{-4}$ Pa. The distance between the target and the substrate was around 10 cm and the sputtering rate was around 2.6 nm/min. Then, post-annealing was performed in N₂ ambient at different annealing temperatures for 30 s by RTA at 600 °C, 700 °C, 800 °C, and 900 °C [12]. As for the NdTiO₃ film, a Nd₂O₃ film of 18 nm in thickness was deposited by RF sputtering in diluted O_2 (Ar/ $O_2 = 12.5/12.5$) with an ambient sputtering power of 150 W, with an operating pressure at $\sim 1.5 * 10^{-4}$ Pa. A Ti film 9 nm in thickness was deposited by RF sputtering with an ambient sputtering power of 150 W and an operating pressure at $\sim 1.5 * 10^{-4}$ Pa. Post-RTA was done in O₂ ambient for 30 s, with RTA at temperatures of 600 °C, 700 °C, 800 °C, and 900 °C. After annealing, a NdTiO₃ film was formed. After the Nd₂O₃ and NdTiO₃ films were annealed, a 3000 Å Al gate electrode was deposited using a thermal evaporator. The capacitor area was defined by wet etching and HF:deionized water (1:10) was used to etch away Nd₂O₃ and NdTiO₃ in the fabrication process. The Nd₂O₃ and NdTiO₃ polyoxide capacitor cross-sections are shown in Fig. 1(a) and (b), respectively. Prior to depositing the blocking oxide layer, the high-k dielectric layer was examined using XRD and AFM to analyze the material properties. The make and model of XRD were Bede X-ray Metrology and Bede D1. The X-ray source was Cu Kα $(\lambda = 1.542 \text{ Å})$ and the configuration was Bragg-Brentano theta-2 theta. The system used a grazing incidence angle ($\theta = 0.5^{\circ}$) in the diffraction and the diffraction angle 2θ range was from 20 to 60° . The surface morphologies were measured by a Veeco D5000 AFM in

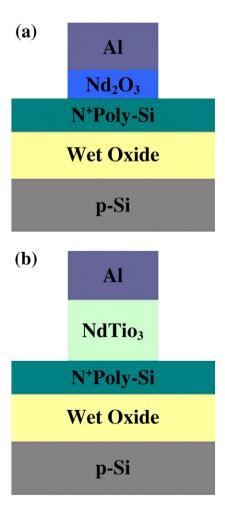


Fig. 1. (a) Nd₂O₃ polyoxide capacitor structure. (b) NdTiO₃ polyoxide capacitor structure.

tapping mode using an applied nano-silicon tip with a 50 N/m spring constant. The scan rate used was 1 Hz and the scan area was 2 $\mu m \times 2 \ \mu m$ with a set engagement ratio of 80%. After the dielectric was fabricated, the equivalent oxide thicknesses (EOTs) of the high- κ Nd₂O₃ and NdTiO₃ dielectric were determined by high-frequency (100 kHz) capacitance–voltage (C–V) measurement by using HP-4284, Hewlett-Packard, USA. The current density versus electric field (J–E) characteristics were measured using a HP4200 semiconductor parameter analyzer.

3. Results and discussion

To examine material improvements caused by annealing, XRD analvsis was used to monitor the crystalline structure. The crystalline Nd₂O₃ phase was observed for samples annealed at different temperatures. and characteristic XRD peaks can be seen in Fig. 2(a). Three diffraction peaks (002), (102) and (110) are clearly presented at 29.7°, 40.4° and 47.8°. Therefore, at the post-RTA temperature of 900 °C, the peak intensity is strongest. In addition, the sample with the highest RTA temperature (900 °C) clearly exhibits an extremely strong peak characteristic of (102)-oriented Nd₂O₃, demonstrating well-crystallized and strong Nd₂O₃ structures for high- κ Nd₂O₃ dielectrics with post-RTA treatment. To examine the XRD of NdTiO₃ film after post-RTA annealing at various temperatures in O₂ ambient for 30 s, Fig. 2(b) shows XRD patterns of the addition of a titanium metal layer to neodymium oxide films before and after the post-deposition annealing treatment. Diffraction peaks of NdTiO₃ at (220) and (023) are clearly presented at 46.2° and 48°. The peak intensity of the NdTiO₃ compound became stronger as the annealing temperature was increased to 800 °C, but suddenly decreased at 900 °C. This finding suggests that the Ti atoms could not obtain enough of a kinetic energy reaction with Nd₂O₃ to form a better NdTiO₃

Fig. 2. (a) XRD patterns of the Nd_2O_3 film after annealing at various temperatures. (b) XRD patterns of the $NdTiO_3$ film after annealing at various temperatures.

Download English Version:

https://daneshyari.com/en/article/1664959

Download Persian Version:

https://daneshyari.com/article/1664959

<u>Daneshyari.com</u>