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Amajor challenge for those utilizing ellipsometry is numerical processing of themeasured data. Our recentwork
shows how the transcendental, multivalued equations arising from the physics of reflection from layers can be
solved in the n–k plane. This approach applies the mathematics of Complex Analysis to solve the equations
numerically. The work presented extends the n–k method to obtain solutions within the accuracy limit of each
measurement. The system treated here is that of a thin absorbing film (chromium) overlying a known substrate
(silicon). Solutions for a three-layermodel of the chromium film including film–substrate and film–air interfacial
layers result in a mean square error (MSE) on the order of 0.01, a significant improvement over a single-layer
model. Relaxing the constraint of vertical homogeneity provides a six-layer model with the same interfacial
layers and four sublayers of chromium. The chromium layers have near-identical values of optical properties
and anMSE of essentially zero (10−13). It is anticipated that additional methods will be needed for other classes
of problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Analysis of ellipsometry data almost always requires computerized
numerical methods because of the nature of the equations arising in
the physics of light reflection from laminar surfaces [1]. Data acquisition
can be very similar regardless of the configuration of the reflecting sur-
face. On the other hand, data analysis may differ markedly depending
upon the thickness, optical properties, and morphology of layers com-
posing the reflecting surface. Consequently data analysis methods will
be different for each class of problem.

The problem of solving the ellipsometry equations is difficult and
can be improved. Prior to the early 1980s ellipsometry solutions were
obtained using a book of tables, calculators, or a Fortran program
[2–4]. Thesemethods led to the use of least-squares, best-match numer-
ical methods (Levenburg–Marquardt) implemented on digital personal
computers [5]. Least squaresmethods have been useful for ellipsometry
problems which are not adversely affected by correlation problems. On
the other hand, errors introduced by the matching process can become
very large as in the case of thin absorbing films.

The authors have been developing and publishing underlyingmath-
ematical and numerical methods for the modeling and solving process-
es. The requirement is that the number of independent equations equal
or exceed the number of unknowns at each solution, commonly one per
wavelength. The methods pose the mathematical problems to make it

possible to solve the ellipsometry equations to the full limit of the accu-
racy of double precision numbers represented upon a digital computer,
10−13 typically. An important benefit of this is that the full extent of the
instrument accuracy is made available for model improvement. How
the overall solution accuracy is reduced by the effects of measurement
error andmodel imperfection is more fully described in a prior publica-
tion [6].

Here we demonstrate a method which extends a single-layer model
for chromium films on silicon to a much more accurate three-layer
model with a mean square error (MSE) of 0.0105. The single-layer
model has been examined earlier by the present authors using n–k
plane methods [6–10] and by others using best-match [11]. The
single-layer model used in both the earlier work of the present authors
and those cited above were acknowledged as being a simplification of a
real Cr film which was not atomically flat and which had been exposed
to room air. Thus it is not surprising that theMSE could be improved by
the addition of interface layers. A primary purpose of the work present-
ed here is to describe amethod for including additional layers to further
develop the model. All MSE values were computed identically for con-
stant thickness by making use of the standard deviations, σ, at each
measurement to underweight those with wider variances as shown in
the following, commonly-used equation.
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whereN is the number ofmeasurement (Ψ,Δ) pairs,M is the number of
variable parameters in the model, and σ is the variance at each
measurement.

The number of degrees of freedom varied between the different
models and methods. Many different methods were explored by
Hilfiker et al. who did not specifically publish the degrees of freedom
for each case but which, for the point-by-point solutions, clearly ranged
from close to the number of measurements to perhaps half of the num-
ber of measurements depending upon the sample configuration and
number of samples used for a given computation. On the other hand
the number of degrees of freedom may have been as few as 10 for the
work with oscillators. The work reported here had a similar number of
degrees of freedom as the point-by-point work just mentioned, also de-
pending on the specific computations. By any method, the single-layer
model resulted in an inferior MSE compared to the three or more
layer models because these more detailed and accurate multilayer
models brought about a much closer match between measured and
computed values of Ψ and Δ which in turn significantly brought down
the size of the numerator terms in Eq. (1).

Itmust be emphasized that once solutions are found, solution testing
may be readily carried out by any number of methods including any of
the properly-working commercial software packages. The method de-
scribed here does not require initial estimates. Problemswith localmin-
ima do not occur and the numerical processes do not diverge. Note that
while the solutions here are exclusively obtained using computerized
numerical methods, they may be better understood when visualized
graphically. These methods are now finding applications including the
present paper on thin absorbing films, transparent conducting oxide
films, and a basic physics study of optical absorption of lanthanum
chromate films [12,13].

Hilfiker et al. have kindly shared their measured data to allow the
authors to compare solution methods. The method presented here
examines solutions at each individual wavelength within the set of
measurements. At each wavelength there can be a very large, one or
more orders of magnitude, variation in the effect of measurement accu-
racy upon the solution accuracy which depends on the underlying
mathematics of the model. It makes little sense to solve, by any
means, at wavelengths for which the underlying mathematics simply
cannot provide accurate solutions and then to weight these solutions
in the sameway as those obtained atwavelengths forwhich the accura-
cy is better by an order of magnitude or more. In this type of approach,
although only ellipsometric data at two wavelengths is required, spec-
troscopic measurements mainly are necessary to allow identification
of the most appropriate wavelengths for analysis.

2. Theory

Spectroscopic ellipsometry and its mathematical formalism are well
described elsewhere [1]. In general, light undergoes a change in polari-
zation state upon reflection from a surface. The quantitative change in
polarization state provides information pertaining to the reflecting sur-
face. Computation of reflecting surface parameters presents a significant
challenge normally requiring numerical methods to find solutions.

The surface configuration considered here is that of substrates with
overlying films in which the media are uniform, homogeneous and
isotropic with flat interfaces. The mathematics for multiple layers in
the n–k plane analysis method is fully described in a previous publica-
tion [6]. Because the measurements were made on films of different
thicknesses, the twisted curves in three-dimensional (n–k–d) space do
not intersect; however, their projections onto the n–k plane do intersect
if the optical properties n and k do not vary significantly with film thick-
ness. These projections form a vertex at thefilm optical properties n and
k [6]. The work here examines the vertices formed at each measured
wavelength to take advantage of the fact that for ex-situ measurements
the thickness of a film is a constant, a well-known solution constraint.

Descriptions of the way in which a number of theorems of Complex
Analysis have been applied to the ellipsometry problem appear in pre-
vious publications, the details of which are not repeated here [6–10].
We shall identify individual solution curves by the planes upon which
they pass through the point at infinity. All of the solution curves in the
present work originated on the (0, −) log and root planes.

Solution curvesmay terminate only at singularities. The “S” type sin-
gularity is located at

S ¼ n0 sin α0ð Þ ð2Þ

which corresponds to the critical value offilm optical properties for total
external reflection inwhich n0 is the air optical index and α0 is the angle
of light incidence in the air ambient. Curves also may terminate at a “P”
type singularity located at the “pseudo refractive index” of the reflecting
surface

P ¼ n0 sin α0ð Þ
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in which ρ is the measured complex parameter, ρ = tan(Ψ)eiΔ. The
physical interpretation of Eq. (2) is that it provides the optical properties
of an infinite thickness (i.e. bulk) material which corresponds to the
measured values ofΨ andΔ assuminghomogeneous, isotropic bulkma-
terial with no surface roughness. Numerical solutions were calculated
independently at each measured wavelength using a single incidence
angle and thus problems with overdetermination of data were not
encountered.

3. Modeling

All of the computer processes described were carried out using
Matlab© GUI environments. Three measurements on three films of dif-
ferent thicknesses at a single wavelength define an “experiment.” The
fourth measurement was not used until later. The first step is to select
the simplest model of the reflecting surface (single-layer) and to find
the three intersections in the n–k plane for each experiment. At each in-
tersection the associated values of n, k, and d (two values of the thick-
ness, one for each of the intersecting solution curves) are recorded
and plotted together with all of the error statistics for these values.
The methods for computing error statistics are described fully in a
prior publication so are not repeated here [6]. If the thicknesses at
each solution are constant across wavelength then this simplest model
is confirmed. For the data under examination here the simplest model
was not confirmed and thus a more detailed model was required.

This more detailed, three-layer model includes both and an
overlayer and an underlayer. In this case we choose to treat each as a
thin effective medium approximation (EMA) layer composed of 50% of
thematerial above it and 50% of thematerial below it. Clearly somema-
terial science expertise enters at this point and other choicesmay be ex-
amined. Solving the three-layer problem results in significantly
improved agreement in the thickness as a function of wavelength. Opti-
mal overlayer and underlayer thicknesses are obtained by computing
the standard deviation of all the thicknesses for all experiments and
summing them for a grid search of thicknesses. In principle, additional
parameters could be varied. In the case presented in this work, both
the underlayer and overlayer were significant in the solution and there-
fore were required. Intersections are found for each experiment consid-
ering the three-layer model just described including the error statistics.

Finally a solution for a six-layer model is presented. The model in-
cludes the same interfacial layers as the three-layer model but treats
the chromium as four separate layers determined by each of the four
measurements given the thicknesses determined for the three-layer
model plus an estimated thickness for the fourth measurement using
the optical properties of the three-layer model in a limited wavelength
range described below.
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