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A vibrational approach is presented to determine the elastic modulus of individual thin films deposited over a
thicker substrate in multilayered systems. The approach requires measurement of the fundamental frequency
of the multilayer and a laminated beam model for data reduction. A one-dimensional model based on classical
laminated beam theory is introduced to provide a simple analytical approximation of the natural frequency of
thin multilayered materials deposited over a significantly thicker substrate in cantilever beam configuration.
The model has the advantage of providing an easy-to-use analytical expression for the natural frequency of a
multilayered beam in terms of the elasticmoduli of each layer, which can be inverted to calculate the elasticmod-
ulus of any individual layer if the elastic modulus of the remaining layers is known, and the natural frequency of
themultilayered beam ismeasured. The limits of applicability of the proposedmodel are investigated by compar-
ing its predictions of the fundamental frequency to those of an existent analytical model for bilayers and finite
element analysis ofmaterials comprising two and three dissimilar layers. The proposedmodel is applied to obtain
the elastic modulus of Al and Au thin films in an Al/Au/Kapton multilayer.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Laminated construction, where several dissimilar materials are
stacked through the thickness of an integral structure, is a material ar-
chitecture that has proven beneficial in many aspects [1–4]. The thick-
ness of the layers can be in the order of millimeters or hundreds of
micrometers forming a structure of macroscopic dimensions such as
in the case of structural composite materials [5], or in the nanometric
range such as in nano- and micro-electronic devices [1–4]. Designing
layered structures at the nanoscale is an attractive strategy for develop-
ing multifunctional materials. Nano- and micro-metric thin multilayers
find applications as wear and environment-protective coatings, mag-
netic data storage, electronic packaging, thermal barriers, biological, op-
tical and electronic systems, among others [1–4,6–9]. The physical
properties of such thin layers, however, may be different to those of
their bulk counterparts, mainly because of their much higher ratio of
surface area-to-volume and dramatically smaller length scale [1,
10–14]. Knowledge of the elastic behavior of a multilayer as a whole
as well as of each individual layer in the multilayer is of particular im-
portance to assess the mechanical behavior of the multilayered struc-
ture and to design for a reliable and safe operation. However, the
elastic modulus of the individual layers in a multilayered structure

may be different to that of an isolated layer of the same material and
the same thickness (mainly because of interactions among the adjacent
layers) and such an in-situ elastic modulus is quite challenging to mea-
sure. Among themethods used to determine elasticmodulus in bilayers,
the so called “vibration reed” method is one of the less intrusive and
hence most convenient ones [15–17]. In this method, the elastic modu-
lus of one layer in a bilayer is calculated from the shift in natural (or res-
onant) frequency of the beamwithout andwith the second layer, which
represents the input for an adequate model for data reduction [15–19].
Such amodel provides an analytical expression for the fundamental fre-
quency of the bilayer as a function of the fundamental frequency of the
substrate and the elastic properties of both layers, so the problem for-
mulation can be inverted to obtain the elastic modulus of the layer of
interest. Although a few analytical solutions exist for the problem of de-
termination of natural frequency of bilayers in thin film geometry [16,
20], the situation for more than two layers is fairly more complex and
it often requires the use of more advanced laminated theories [21,22].
The investigation of the advantages and limitation of classical laminated
theory for the study of the mechanics of laminated composites can be
traced back to the early works of Pagano [23,24]. Pagano found agree-
ment between classical laminated plate theory and elasticity solutions
when the in-plane dimensions of the laminated plates are significantly
larger than their thickness, and transverse (interlaminar) shear stresses
can be neglected. This laminated theory has been extended over the
years to elegant higher order theories and rigorous elasticity solutions
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describing the mechanics of layered composites, including vibrations
[25–34]. However, these advanced laminated theories are oftenmathe-
matically complex and their solutions frequently lack of a closed-form
analytical expression, which is needed herein for the practical imple-
mentation of the vibratory model. To predict the fundamental frequen-
cy of multilayers, simple one-dimensional solutions, with a closed-form
expression which is ready to use as a data reductionmethod for the fre-
quency measurements seems to be inexistent. Given this motivation,
this work presents a vibrational approach to obtain the elastic modulus
of individual thin films forming part of a thicker multilayered structure.
The main contribution of this work is to propose an integral approach
formeasuring such an elasticmodulus, combining dedicated vibrational
experiments and an ad-hoc, simple, and easy-to-use vibrational model.
As the model for data reduction, the research proposes the use of a
closed-from vibrational model based on one-dimensional classical lam-
inated beam theory to predict the fundamental frequency of a multilay-
ered structure as a function of the elastic properties of the constituent
layers. The solution is first benchmarked against existent vibratory so-
lutions for monolithic beams and bilayers, as well as finite element
analysis, and then extended to the case of multilayers. Since the
model assumes that the layered beam is symmetric (with respect
to its thickness), limitations of the proposed laminated solution re-
garding the maximum allowed thickness of the films in the multilay-
er structure are examined, and estimations of the incurred error are
provided considering the numerical finite element solution as refer-
ence. Finally, the model is used to obtain the elastic modulus of alu-
minum (Al) and gold (Au) thin films in a multilayer system
composed of an Al/Au bilayer sequentially deposited over a polyimide
(Kapton) substrate.

2. Vibrational modeling

The vibrating beam considered herein is a slender cantilever beamof

length l, width b and total thickness h ¼ ∑
n

k¼1
hk as shown in Fig. 1a. In its

most general form, the beam is constituted of n dissimilar layers each
one indicated by the ply index k (k = 1….n), Fig. 1b. The thickness of
each layer is hk and the beam's mid-plane is located at z = 0. Closed-
form solutions for the fundamental frequency of such a beam for simpli-
fied cases with one or two layers exist in the literature [16,20,34].
However, the solution for the natural frequency of a laminated beam
of several (N2) layers is rather complex. Solutions to this vibratory prob-
lem exist, see e.g. [27,29], but they demand high order theories or
elasticity solutions which inhibit its practical use as a straightforward
data reduction method to this problem. Therefore, a simplified one-
dimensional model based on classical laminated theory [5,23,24] is
developed here for a symmetric laminate with an arbitrary number of
layers. Known solutions for beams of one and two layers are presented

in Sections 2.1 and 2.2, while the proposed model for multilayers is
presented in Section 2.3.

2.1. Euler–Bernoulli model for monolithic beams

For the case of a single-layer (n = 1) isotropic beam with slender
geometry, cross-sectional area A, mass density ρ, elastic modulus E,
and moment of inertia Iz subjected to transverse (z) vibrations, the
well-known Euler–Bernoulli governing differential equation for the
transverse displacements w is [34],

c2
∂4w
∂x4

þ ∂2w
∂t2

¼ 0 ð1aÞ

with,

c ¼
ffiffiffiffiffiffiffi
EIz
ρA

s
: ð1bÞ

For the case of a cantilever beam with rectangular cross-section the
solution for the fundamental vibrational frequency (f0) is [34],

f 0 ¼ 0:1615h
l2

ffiffiffi
E
ρ

s
ð1cÞ

where l is the beam's length and h its thickness.

2.2. Whiting's bilayer model

The case of an anisotropic bilayer (n=2) can be addressed through
laminated theory or elasticity formulations [25,27,29]. However, since a
closed-form analytical solution for the bilayer problem is needed here,
the simplified solution presented by Whiting et al. [16] for isotropic bi-
layers is of particular interest. This solution is especially suited for thin
films and coatings, which assumes that the beams are slender, isotropic,
and that the effects of shear deformation and inertia are neglected.
Using an energy variational principle,Whiting et al. proposed a solution
for the natural frequency of the bimaterial (fbim) normalized by that of
the substrate (fs) as [16],

f bim
f s

� �2
¼

1þ Erhrð Þ 1þ Erhr
3

� �
þ 3Erhr hr þ 1ð Þ2

1þ ρrhrð Þ 1þ Erhrð Þ

2
4

3
5 ð2Þ

where the elastic modulus, thickness, and density ratios are given by
Er = Ef / Es, hr = hf / hs and ρr = ρf / ρs. The subscripts “f ” and “s” cor-
respond to “film” (f) and “substate” (s).

Fig. 1. Schematic representation of a multilayer beam. a) A multilayer beam in cantilever configuration, b) cross-section indicating the z-coordinates of each layer.
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