Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/combustflame

A 0D aircraft engine emission model with detailed chemistry and soot microphysics

Chowdhury G. Moniruzzaman*, Fangqun Yu

Atmospheric Science Research Center, State University of New York at Albany, 251 Fuller Road, Albany, NY 12203, USA

ARTICLE INFO

Article history: Received 9 June 2011 Received in revised form 11 August 2011 Accepted 7 November 2011 Available online 3 December 2011

Keywords: Combustion Emission model Aircraft engine Soot microphysics Detailed chemistry

ABSTRACT

Aviation emission of gas phase pollutants and particulate matter contribute to global radiative forcing and regional air quality degradation near airports. It is important to understand the formation and time evolution of these pollutants inside aircraft engines to design strategies for emission reduction. A physics and chemistry based zero-dimensional (0D) gas parcel model with detailed jet fuel chemistry and soot microphysics has been developed to predict the time evolution, formation history, and emission index (EI) of key combustion gases and size-resolved soot particles of an aircraft engine. The model was applied to a CFM56-2-C1 aircraft engine for idle operating condition, for which comprehensive measured data from the Aircraft Particle Emissions eXperiment (APEX) campaign are available. The measured EI data of four major pollutants, including CO, NOx (NO + NO₂), total hydrocarbon (HC) mass, and soot mass, were used to optimize the model parameters. The model predicts the time evolution of concentration of CO, NOx, HC, soot size distribution, CO2, H2O, SO2, NO, NO2, HONO, HNO3, SO3, H2SO4, O2, H, H2, O, OH, HO₂, H₂O₂, and some HC species in the combustor and turbine. Reasonable agreement was found between the simulations and the measurements. It was found for idle operating condition that, for most of the combustion products, concentrations did not change significantly in the turbine and nozzle, however, HONO, H₂SO₄, and HO₂ concentrations did change by more than a factor of 10, while NOx, NO, NO₂, O, OH, soot particle mass and soot particle number by less than a factor of 2. The developed model is computationally efficient and can be used to, study detailed chemical and microphysical processes during combustion, investigate the effects of different fuel compositions and operating conditions on aircraft emissions, and assist air quality study near aircraft emission sources.

© 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The impact of aviation combustion emissions on global climate in the troposphere and lower stratosphere [1–3] and air quality near airports [4,5] is of great concern to the scientific community and policymakers. While aviation-emitted carbon dioxide (CO₂) contributes only \sim 1.6% to total anthropogenic radiative forcing (RF) [3], non-CO₂ aviation emission of gas phase compounds such as carbon monoxide (CO), nitrogen compounds, water vapor, sulfur compounds, polvaromatic hydrocarbons (PAHs), un-burnt organic hydrocarbons (HCs) and particulate matter (PM), such as soot and volatile particles, contribute to both climate effects, being responsible for \sim 4.9% of total anthropogenic RF [3], and regional air quality degradation. The detail emission data of these key chemical compounds and soot from aircraft engine are required to study the effects of aviation emissions on climate and regional air quality. Moreover, understanding the formation mechanisms of these key chemical compounds and soot in the combustor and post combustor region (turbine and nozzle) of an aircraft engine

E-mail address: monir@asrc.albany.edu (C.G. Moniruzzaman).

is necessary in order to design a combustor with reduced emissions. Emission prediction through combustion modeling is an important approach to advance such an understanding.

Combustion and Flame

The ideal combustion model will be a three dimensional (3D) computational fluid dynamics (CFD) flow model which determines the temperature, fluid velocity, pressure, and concentration of gas and soot in 3D spatial coordinates. But 3D CFD modeling needs excessive computation time even for the highly simplified combustion chemistry of one reaction step and a small number (2)–(5) of chemical compounds. Hence, to study details chemistry and soot microphysics, the number of fluid flow dimensions (0D/1D, 2D, 3D), chemical reactions, and soot size bins need to be optimized to get reasonable results within a practical computation time period. The present model focuses on the inclusion of detailed chemistry and size-resolved soot microphysics in an aircraft engine combustor and, therefore, a 0D combustion model has been chosen.

Modeling the aircraft engine combustor is difficult because of the inhomogeneous air mass and various processes inside the combustor. The combustion products are transported towards three spatial dimensions by advection and diffusion which result in a 3D distribution of temperature and equivalence ratio (which is the ratio of the fuel-air mass ratio over the fuel-air stoichiometric

^{*} Corresponding author. Fax: +1 518 437 8758.

Nomenclature

Ahhreviatio	ממר
OD	0 dimensional
1D	1 dimensional
2D	2 dimensional
3D	3 dimensional
APEX	Aircraft Particle Emissions eXperiment (campaign)
CFD	computational fluid dynamics
DCA	dilution and cooling air
DZ	dilution zone (of the combustor)
EI	emission index (g/kg-fuel)
ER	equivalence ratio
FSC	fuel sulfur content
HC	hydrocarbon
HACA	hydrogen-abstraction/carbon-addition
ICAU	International Civil Aviation Organization
	nalvaromatic hydrocarbon
PFR	plug-flow reactor
PSR	perfectly-stirred reactor
RF	radiative forcing
PM	particulate material
PZ	primary zone (of the combustor)
PZ1	primary zone 1 (of the combustor)
PZ2	primary zone 2 (of the combustor)
PZDA	primary zone dilution air
PZH	primary zone hole (of the combustor)
TN	turbine and nozzle of the engine
SVPM	secondary volatile particle matter
Symbols	
$c_{p,i}$	heat capacity of <i>j</i> th gas parcel (Joule/mol-K)
f	the ratio of the cumulative mass of the <i>j</i> th unmixed
	gas parcel at any time to the cumulative mass of the
	jth unmixed gas parcel at the PZ1 end
Ĵda,pzh	the ratio of PZH air mass added as dilution air into the
	PZH section through PZH to the cumulative air mass at
EA	the end of the PZZ
<i>FA_{ce}</i>	compustor (or the ratio of cumulative fuel flow rate
	to cumulative air flow rate at the combustor end)
f.	the ratio of the cumulative mass of the <i>i</i> th unmixed
Jj,ce	gas parcel at combustor end to the cumulative mass
	of the <i>i</i> th unmixed gas parcel at the PZ1 end
finzle	the ratio of the cumulative mass of the <i>i</i> th unmixed
<i>JJ</i> , <i>p</i> 210	gas parcel at PZ1 end to the cumulative mass of the
	<i>j</i> th unmixed gas parcel at the PZ1 end (=1)
$f_{i,pz2e}$	the ratio of the cumulative mass of the <i>j</i> th unmixed
- 5 1	gas parcel at PZ2 end to the cumulative mass of the
	jth unmixed gas parcel at the PZ1 end
g	the ratios of the cumulative mass of added DCA at any
	time to the total DCA mass to be added into the PZH
	and DZ
g_{ce}	the ratios of the cumulative mass of added DCA at
	combustor end to the total DCA mass to be added into
_	the PZH and DZ
g _{pz1e}	the ratios of the cumulative mass of added DCA at PZ1
	and D7
σ	the ratios of the cumulative mass of added DCA at P72
&pz2e	end to the total DCA mass to be added into the D7H
	and DZ
m _{cu ce}	the cumulative flowed total gas mass at the combustor
cu,ce	end during the combustor residence time (kg)
m _{cu.dca.ce}	cumulative added DCA mass at the combustor end (kg)
m _{cu,dca,pz1e}	cumulative added DCA mass at the PZ1 end (kg)

m _{cu,dca,pz2e}	cumulative added DCA mass at the PZ2 end (kg)	
$m_{cu,i,ce}$	cumulative mass of <i>j</i> th gas parcel at the combustor	
	end (kg)	
$m_{cu,i,pz1e}$	cumulative mass of <i>j</i> th gas parcel at the PZ1 end (kg)	
$m_{cu.i.pz2e}$	cumulative mass of <i>j</i> th gas parcel at the PZ2 end (kg)	
$m_{cu,j,ce}$	cumulative mass of <i>j</i> th gas parcel at the combustor	
-	end (kg)	
Δm_{dca}	total DCA mass to be added into the PZH and DZ of the	
	combustor during the PZH and DZ residence time (kg)	
Ν	the number concentration of soot particles in a gas	
	parcel (#/kg-gas)	
$N_{j,k}$	the number concentration of soot particles in the <i>k</i> th	
	size bin in the <i>j</i> th gas parcel (#/kg-gas)	
N_k	the number concentration of soot particles in the <i>k</i> th	
	size bin at any time (or at any cross section) of the	
	combustor and turbine (#/kg-gas)	
n_p	number of unmixed gas parcel	
n _{sp}	total number of chemical compounds	
n _{st}	total number of soot size bins in sectional aerosol	
	dynamics model	
<i>n_{stp}</i>	total number of fuel rich soot gas parcels whose mass	
	fraction change rate through out the combustor were	
	set different than all other gas parcels	
$n_{wlp;}$	total number of fuel lean wall region gas parcels	
	whose mass fraction change rate through out the com-	
	bustor were set different than all other gas parcels	
Patm	pressure in the atmosphere (atm)	
$P_{ci,idl}$	combustor inlet pressure for idle operating condition	
	(atm)	
RP _{ci,idl-to}	the ratio of combustor inlet pressure during idle to	
57	that during take-off	
RI _{ci,idl-to}	the ratio of combustor inlet temperature during idle to	
	that during take-off	
r_{pz1}	the ratio of residence time of the primary zone 1 of the	
	compustor to the residence time of the whole compus-	
r.	the ratio of residence time of the primary zone hole of	
I pzh	the combustor to the residence time of the whole	
	combustor	
r	the ratio of residence time of the turbine and pozzle to	
' tn	the residence time of the whole combustor	
Т	temperature of the atmosphere (K)	
P_{atm}	combustor inlet pressure for idle operating condition	
1 сі,іаі	(atm)	
P.	pressure at the turbine and pozzle exit (atm)	
t tne	cumulative residence time (s)	
t T	temperature at any time (or at any cross section) of	
1	the combustor and turbine (K)	
Toi	initial temperature of <i>i</i> th unmixed gas parcel at the	
-0,	start of simulation (at combustor inlet) (K)	
T:	temperature of <i>i</i> th gas parcel (K)	
True	temperature at the turbine and nozzle exit (K)	
Z	the mass fraction of a chemical compound in a gas	
	parcel	
Z _{dca.i}	the mass fraction of <i>i</i> th chemical compound in DCA	
Zi	the mass fraction of <i>i</i> th chemical compound at any	
-	time (or at any cross section) of the combustor and	
	turbine	
$Z_{j,i}$	the mass fraction of <i>i</i> th chemical compound in <i>j</i> th gas	
	parcel	
Greek letter		

α the ratio of cumulative mass of a gas parcel at any time to the cumulative flowed total gas mass at the combustor end during the combustor residence time

Download English Version:

https://daneshyari.com/en/article/166550

Download Persian Version:

https://daneshyari.com/article/166550

Daneshyari.com