Contents lists available at ScienceDirect

Thin Solid Films

journal homepage: www.elsevier.com/locate/tsf

Effect of the thin Ga_2O_3 layer in n^+ -ZnO/n- Ga_2O_3 /p-Cu₂O heterojunction solar cells

Tadatsugu Minami, Yuki Nishi, Toshihiro Miyata*

Optoelectronic Device System R&D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 Japan

ARTICLE INFO

Available online 3 July 2013

Keywords:

Solar sells

Thin film

Heterojunction

Cu₂O

 Ga_2O_3

AZO

ABSTRACT

The influence of inserting a Ga₂O₃ thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu₂O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga₂O₃ thin film/p-Cu₂O sheet structure. It was found that this Ga₂O₃ thin film can greatly improve the performance of Cu₂O-based heterojunction solar cells fabricated using polycrystalline Cu₂O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga₂O₃/Cu₂O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga₂O₃ films. The external quantum efficiency obtained in AZO/Ga₂O₃/Cu₂O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu₂O heterojunction solar cells (i.e., prepared without a Ga₂O₃ layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga₂O₃ thin film and the Cu₂O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga₂O₃/Cu₂O heterojunction solar cells fabricated using an n-Ga₂O₃ thin-film layer prepared with a thickness of 40–80 nm at an O₂ gas pressure of approximately 1.7 Pa by a pulsed laser deposition.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, we reported that n-type semiconductor/p-type Cu₂O heterojunction solar cells with a conversion efficiency of 3.83% could be fabricated by forming an Al-doped ZnO (AZO)/non-doped ZnO/ Cu₂O structure on the front surface of polycrystalline Cu₂O sheets that had been prepared by a thermal oxidization of copper sheets [1]. This drastic improvement of conversion efficiency was made possible by the formation of an n-type ZnO thin-film layer (prepared with an appropriate thickness) using a low damage deposition technique on high quality polycrystalline Cu₂O sheets [2–4]. It is known that the obtainable open-circuit voltage is strongly dependent on the kind of n-type semiconductor layer used for forming the p-n heterojunction, such as the Cu₂O-based heterojunction [1-10]. In this regard, we have recently reported that the obtained conversion efficiency and the open-circuit voltage in n^+ -AZO/n-Zn_{1-x}Mg_xO/p-Cu₂O heterojunction solar cells (non-doped $Zn_{1-x}Mg_xO$ thin films used as an n-type semiconductor layer) increased as the Mg content (Mg/(Zn + Mg))atomic ratio: x) was increased in the range from 0 to 0.09 [11]. In addition, it has been reported that the obtainable photovoltaic properties in n-semiconductor/p-Cu₂O heterojunction solar cells also are affected by the surface condition of the p-Cu₂O layer, that is, the interface at the heterojunction, rather than the diffusion potential resulting from the

0040-6090/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tsf.2013.06.038 difference of work functions between the p-Cu₂O and n-semiconductor layers [12–15]. We have reported more recently that a non-doped gallium oxide (Ga₂O₃) thin film is suitable as an n-semiconductor layer in n-semiconductor/p-Cu₂O heterojunction solar cells [16]. A high efficiency over 5% was obtained in an n⁺-AZO/n-Ga₂O₃/p-Cu₂O heterojunction solar cell fabricated with a non-doped Ga₂O₃ thin film as the n-semiconductor layer.

For this paper, the influence of inserting a non-doped Ga_2O_3 thinfilm layer on the obtainable photovoltaic properties in Cu_2O -based heterojunction solar cells was investigated with a transparent conductive AZO thin film/n- Ga_2O_3 thin film/p- Cu_2O sheet structure. To improve the photovoltaic properties, the preparation conditions of the inserted non-doped Ga_2O_3 thin-film layer were optimized for use in n⁺-AZO/n- Ga_2O_3 /p- Cu_2O heterojunction solar cells that were fabricated by forming this Ga_2O_3 thin film on the front surface of thermally oxidized Cu_2O sheets using a pulsed laser deposition (PLD) method.

2. Experimental

The solar cells were fabricated by forming an n^+ -AZO/n-Ga₂O₃/ p-Cu₂O structure on the front surface of Cu₂O sheets (thickness of approximately 0.2 mm) and an Au ohmic electrode on the back surface; the Cu₂O sheets function as the active layer as well as the substrate, as shown in Fig. 1. The Cu₂O sheets were prepared by oxidizing Cu sheets using a heat treatment process that consisted of three steps in a furnace with a controlled ambient atmosphere [3,15]. The first step was annealing in an Ar gas atmosphere: Cu sheets (30 mm × 30 mm)

^{*} Corresponding author. Tel.: +81 762940714; fax: +81 762943733. *E-mail addresses*: tmiyata@neptune.kanazawa-it.ac.jp, toshihiromiyata2008@live.jp (T. Miyata).

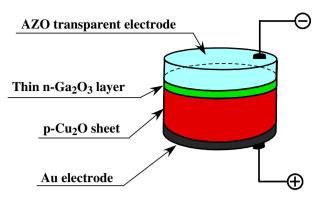
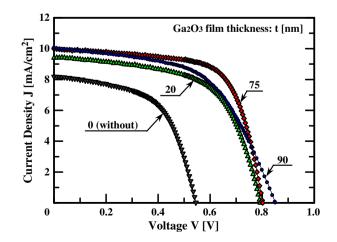


Fig. 1. Schematic structure of an AZO/n-Ga₂O₃/p-Cu₂O solar cell.

with a purity of 99.9 % were heated up to 1025 °C at a rate of 17 °C/min and kept at this temperature for 1 h. The second step was oxidization in air: air was introduced into the furnace, and the temperature was kept at 1025 °C for 2 h. The third step resulted in the formation of superior Cu₂O: after the air was purged, an Ar gas atmosphere was introduced into the furnace, and then the sheets were annealed at 1025 °C for 2 h. Subsequently, the temperature was lowered to 500 °C at a rate of 8 °C/min, and finally, the Cu₂O sheets were brought out to the air environment at room temperature (RT). The resulting Cu₂O sheets were polycrystalline p-type semiconductors composed of grains whose size, in the range from approximately 1 to 100 mm², could be controlled by varying the heat treatment conditions described above. However, the obtained electrical properties, i.e., resistivity of 10²- $10^3 \Omega$ cm, the hole concentration on the order of 10^{13} cm⁻³ and the Hall mobility above 100 cm²/Vs, were relatively independent of the observed grain size.

In the first step of device fabrication, the CuO surface layer of the oxidized Cu₂O sheets was removed by chemical wet etching. Subsequently, the AZO and Ga₂O₃ thin films were prepared with a PLD method using an ArF excimer laser (wavelength, 193 nm; repetition rate, 20 Hz; pulse width, 20 ns; and fluence, 350 mJ/cm²) under the following deposition conditions: target-substrate distance, 40 mm; deposition temperature, RT (not intentionally heated); target, sintered AZO or non-doped Ga_2O_3 pellets; and atmosphere and pressure, O_2 gas at 0 (vacuum below 10^{-4} Pa)–2.2 Pa. In order to evaluate the electrical and optical properties of the resulting AZO and Ga₂O₃ films, simultaneous depositions were also conducted on OA-10 glass (Nippon Electric Glass Co., Ltd.) substrates. The AZO thin films, used as the transparent electrode in all the heterojunction solar cells, were always prepared with a thickness of 150–300 nm at an O₂ gas pressure of 0.2 Pa. The AZO thin films exhibited a resistivity of approximately $8 \times 10^{-4} \Omega$ cm and a carrier concentration of approximately 6.5×10^{20} cm⁻³. The work function of the AZO and Ga₂O₃ thin films and the Cu₂O sheets was evaluated from the wavelength dependence of the photoemission of electrons using ultraviolet photoelectron spectroscopy [17]. The photovoltaic properties of the solar cells (electrode area of 3.14 mm²) were evaluated by exposing only the AZO transparent electrode area to AM1.5G solar illumination (100 mW/cm²) at 25 °C.


3. Results and discussion

3.1. Effect of inserting the Ga_2O_3 thin-film layer

In addition to the photovoltaic properties of solar cells with an n-semiconductor thin film/p-Cu₂O sheet structure being considerably affected by the materials used as the n-type semiconductor layer, it is also known that these properties also are affected by the surface condition of the p-Cu₂O layer in Cu₂O-based heterojunction solar cells, that is, the interface at the heterojunction [12–15,18,19]. Consequently,

the obtainable photovoltaic properties such as the open-circuit voltage and the fill factor in Cu₂O-based heterojunction solar cells are considerably dependent on the method as well as the operating conditions that exist when depositing an n-semiconductor thin film. As a result of investigations, we recently have found that a non-doped Ga₂O₃ thin film prepared at RT by a PLD method is a very promising material for the n-semiconductor layer in n-semiconductor/p-Cu₂O heterojunction solar cells [16]. Typical current density-voltage (I-V) characteristics as a function of the Ga₂O₃ thin-film thickness are shown in Fig. 2 for n^+ -AZO/n-Ga₂O₃/p-Cu₂O heterojunction solar cells (fabricated with AZO and non-doped Ga₂O₃ thin films) measured under AM1.5G solar illumination. The Ga₂O₃ thin films were prepared at RT with O₂ gas introduced into the deposition chamber at a pressure of 1.7 Pa. As can be seen in Fig. 2, a drastic improvement of the J-V characteristic was obtained by the insertion of a Ga₂O₃ thin-film layer into an AZO/Cu₂O heterojunction solar cell. Both the open-circuit voltage (V_{OC}) and the short circuit current density (J_{SC}) were increased dramatically by inserting an n-Ga₂O₃ thin-film layer, even with a thickness of approximately 20 nm. In addition, the fill factor (FF) gradually improved as the Ga₂O₃ thin-film thickness was increased up to 50–75 nm. The obtained V_{OC} , J_{SC} , FF and conversion efficiency (η) as functions of the Ga_2O_3 thin-film thickness (t) are shown in Fig. 3 for the AZO/ Ga_2O_3 / Cu₂O heterojunction solar cells shown in Fig. 2. As can be seen in Fig. 3, η reached its peak at a thickness of 50–75 nm and then decreased as the thickness was increased further. The increase of η with increasing Ga₂O₃ thin-film thickness up to approximately 40 nm is related to increases of both V_{OC} and J_{SC} ; however, the fluctuation of η at thicknesses above approximately 40 nm is attributed mainly to that of FF. The decrease in FF at thicknesses above approximately 75 nm may be attributed to the increase of series resistance resulting from the thickness increase because the Ga₂O₃ thin films used as the n-semiconductor layer exhibited very high resistivity, as described later. It should be noted that a $V_{\rm OC}$ of 0.80 V and a η of 5.38% were obtained in an AZO/Ga₂O₃/Cu₂O heterojunction solar cell fabricated with a Ga₂O₃ thin-film layer with a thickness of 75 nm.

As can be seen in Fig. 3(a), the obtained J_{SC} was markedly increased by inserting the n-Ga₂O₃ thin-film layer. In addition, the observed external quantum efficiency (EQE) in AZO/Ga₂O₃/Cu₂O heterojunction solar cells improved dramatically as the Ga₂O₃ thin-film layer thickness was increased from 0 to approximately 40 nm and then remained unchanged as the thickness was increased further. The EQE obtained in AZO/Ga₂O₃/Cu₂O heterojunction solar cells was always greater than that obtained in an AZO/Cu₂O heterojunction solar cell, ranging over the full gamut of observable EQE spectra. Typical normalized EQE spectra are shown in Fig. 4 for the AZO/Ga₂O₃/Cu₂O

Fig. 2. *J*-*V* characteristics of AZO/Ga₂O₃/Cu₂O solar cells fabricated with various Ga₂O₃ film thicknesses (*t*): $0 (\nabla)$, $20(\Delta)$, $75(\diamond)$ and $90 \text{ nm} (\bigcirc)$, measured under AM1.5G solar illumination.

Download English Version:

https://daneshyari.com/en/article/1665729

Download Persian Version:

https://daneshyari.com/article/1665729

Daneshyari.com