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In this article we use a recently developed analytical stress theory to describe hetero-epitaxial growths,
extending the analysis capability in case of extreme conditions of strongly nonlinear dependence of the
local strain field and of the elastic properties (Young modulus) on the film thickness. We apply this extended
theory to study the heteroepitaxial growth of cubic silicon carbide on silicon (100).
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1. Introduction

Conductive, dielectric, semiconducting, piezoelectric and ferroelec-
tric thin films are extensively used for micro and nano electromechan-
ical systems (MEMS and NEMS) applications. Two important
parameters affect their properties, namely the residual stress/strain
and the elastic properties of the film. Presently, it is very difficult to
predict these parameters directly from the growth process, therefore
extended analysis of the grown films are essential for both process
development and processmonitoring.Many suggestions for stressmea-
surements in thin films have been made over the past several decades.
The conventional method involves measuring the wafer curvature to
calculate the average defective stress using the Stoney equation [1–3].
Other approaches include X-ray diffraction [4] or analysis of the deflec-
tions of specifically designed surface machined microstructures [5–8].
In this last technique the microstructures, released after locally remov-
ing the underlying substrate, deform by increasing or decreasing their
dimensions to minimize the total elastic energy. The residual local
strain can be derived on the basis of these deformations. Several micro-
structures have been proposed [9], though it has been recently demon-
strated that planar rotators (PR) [6,7] are superior in that allow for a
simultaneous determination of both the in-plane and out-of-plane
deflections and, thus, a deeper knowledge of the residual strain field
which, in turn, is connected to the initial, defect related, strain field.
On the other hand, the elastic properties of the films can be measured
among the others, through nano-indentation [10], bulge tests [11] or
micro-machined resonance frequencies [12,13].

Recently it has been found, through the analysis of cantilever natural
resonance frequencies, that the Young modulus of cubic silicon carbide

films (3C-SiC) hetero-epitaxially grown on silicon (100) [13] changes
along the film thickness ranging from ESiC~210 GPa for a ~2 μm thick
film to ESiC~420 GPa for a ~3.5 μm one. Furthermore, for the same
film, it was observed a strong reduction of the out-of-plane deflection
of the micro-machined cantilevers as function of the film thickness
thus suggesting a non-linear variation of the defective strain within
the film [6].

In this article we analyze the observed deflections incorporating
the variation of the Young module in the theoretical model.

2. Stress theory for macro and micro deflections

To correlate the observed macro deflections in the wafer and the
deflections of the microstructures to the initial defective strain εdef(z)
and to the variation of the Young modulus we begin by considering
the total elastic energy with respect to the strain fields, both at the
macro and micro levels:

Uwafer δwafer

� �
¼ ∫hfilm

−hsub
M zð Þε2res zð Þdz Umicro δmicroð Þ ¼ ∫hfilm

0 M zð Þε2fin zð Þdz
ð1Þ

where hsub and hfilm are the substrate and the film thicknesses, with the
origin of the system (z=0) chosen at the substrate/film interface.
M(z)=E(z)/(1−υ(z)) is the biaxial modulus, E(z) is the Youngmodulus,
which can vary along the film thickness, and υ(z) is the Poisson's ratio of
the substrate (for zb0) and film (for z>0), respectively (we assume
the following values ESi=130GPa, υSi=0.278 [14] and υSiC=0.23 [15]).
εres(z) and εfin(z) are the residual strains after the first (wafer bowing)
and second (microstructure deflection) relaxations.
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In the Kirchoff hypothesis (i.e., lateral dimensions much greater
than system thickness) we can assume linear relations [16]:

εres zð Þ ¼ εdef zð Þ−Kmacrozþ εmacro εfin zð Þ ¼ εres zð Þ−Kmicrozþ εmicro ð2Þ

with Kmacro(Kmicro) and εmacro(εmicro) being the curvature and in-plane-
strain of the heterosystem (microstructures). The final (experimentally
observed) deflections can be obtained by the minimization of the
total elastic energies Uwith respect to all the allowed displacements
(Kmacro, εmacro, Kmicro, εmicro). Solving the system of equations we get:
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and
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Using Eqs. (3)–(6) we can calculate the final deflections (Kmacro,δx,δz)
in terms of the initial defective strain field εdef(z) including the impact of a
variable young'smodulus ESiC(z) through the integrals in Eqs. (5) and (6).

It is worth noting that, although the equations governing the model
are numerous and relate the initial defective strain εdef(z) to the deflec-
tion rather than the deflections to the strain, i.e. they are formulated in
an implicit form, the presented model can be easily implemented and
solved iteratively in any computer by solving the integrals in Eqs. (5)
and (6) and finding the εdef(z) function that give rise to final deflections
(Kmacro,δx,δz) consistent with the observed ones.

Following ref. [7,8] we consider a constrained/defective stress
described by a power law function:

σdef zð Þ ¼ Efilm zð Þ
1−υfilm

 !
AzB z > 0 ð8Þ

where A and B are fitting parameters. The power law function was
found to be the best one to describe the evolution of stacking
fault film density in the heteroepitaxial growth of SiC/Si(100) [6,7,17].
Efilm(z) is chosen following Fig. 3 of ref. [13] and assuming the following
functional expression:

Efilm zð Þ ¼
217 GPa½ � 0bzb2μm

166 z=10−6
� �

−110
n o

½GPa� 2μm≤z≤4μm
427 GPa½ � 4μmbz

8><
>: ð9Þ

the latter (Efilm(z)=427 GPa) being close to the ab-initio value for an
ideal, defect free, crystal [15].

To study the impact of the variation of the Young modulus on the
final deflections we compare the calculated macro and micro deflec-
tions with the one obtained assuming a constant ESiC equal either to
the minimal experimental value (ESiC(z)=ESiC(2μm)=217GPa) or to
the maximal one ESiC(z)=ESiC(4μm)=427GPa.

As can be seen in Fig. 1, the assumption of a variable ESiC(z) has a
strong impact on the wafer curvature whereas it only slightly changes
the micro (in-plane and out-of-plane) deflections. These results are

Fig. 1. Macro (A) and micro (B and C) deflections as a function of film thickness assuming
two possible constant (ESiC=217 GPa and ESiC=427 GPa) or variable (following
ref. [13], Eq. (9)) Youngmodules. The parametersA and B of Eq. (8)were chosen so that δz(h-
film=2.19μm)=−24μm and δx(hfilm=2.19μm)=3.2μm with LO=10μm,L=300μm,
LC=160μm, hfilm=2.19μmand hsub=525μm.Consistentwith ref. [6] (star points in B and C).
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