Contents lists available at ScienceDirect

Thin Solid Films

journal homepage: www.elsevier.com/locate/tsf

The impact of trimethylindium treatment time during growth interruption on the carrier dynamics of InGaN/GaN multiple quantum wells

Shih-Wei Feng ^{a,*}, Hung-Cheng Lin ^b, Jen-Inn Chyi ^b, Chin-Yi Tsai ^a, C.J. Huang ^a, Hsiang-Chen Wang ^c, Fann-Wei Yang ^d, Yen-Sheng Lin ^e

^a Department of Applied Physics, National University of Kaohsiung, No.700, Kaohsiung University Rd., Nan Tzu Dist., 811. Kaohsiung, Taiwan, ROC

^b Department of Electrical Engineering, National Central University, Taiwan, ROC

^c Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Taiwan, ROC

^d Department of Electronic Engineering, Southern Taiwan University, Taiwan, ROC

^e Department of Electronic Engineering, I-Shou University, Taiwan, ROC

ARTICLE INFO

Article history: Received 2 August 2010 Received in revised form 1 April 2011 Accepted 1 April 2011 Available online 9 April 2011

Keywords: Trimethylindium (TMIn) treatment Growth interruption InGaN/GaN Indium gallium nitride Gallium nitride Multiple quantum wells Carrier dynamic Photoluminescence

1. Introduction

ABSTRACT

Solid-state lighting through light emitting diodes (LEDs) is considered the next generation white-lighting. Because green light affects the quality of white light, significant improvement of the luminescence efficiency of green InGaN LEDs are crucial. In this study, the effects of trimethylindium (TMIn) treatment time during growth interruption on the emission and carrier dynamic characteristics of InGaN/GaN multiple quantum wells with green emission were investigated. TMIn treatment during growth interruption suppresses InGaN decomposition and indium aggregation such that more homogeneous indium composition, higher effective potential level, higher energy (localized) states, stronger photoluminescence (PL) intensity, and an apparent S-shaped variation of the temperature-dependent PL peak position were observed. In addition, as the treatment time increases, the decay time and its variation both become smaller. Because indium composition within the InGaN quantum wells is more homogeneous the longer the treatment time, weaker carrier transport and carrier-localized effects lead to a shorter decay time and better recombination efficiency. The research results provide important information to optimize the performance of green and white LEDs.

© 2011 Elsevier B.V. All rights reserved.

Solid-state lighting through light emitting diodes (LEDs) is considered the next generation white-lighting [1,2]. White LEDs can be achieved by color mixing either from the direct output of red. green, and blue LEDs or from color-conversion phosphor [1,2]. Phosphor-based white LEDs with InGaN blue LEDs can achieve external quantum efficiency above 70% [1-4]. Due to the lack of green and red LEDs, the color rendering index of the phosphor-based configuration is relatively low. Because the human eye is most sensitive to green light, green light strongly affects the human perception of the quality of white light. Unfortunately, the quantum efficiencies of both InGaN- and AlInGaP-based LEDs are significantly lower in the green-yellow (500-580 nm) spectral range. This efficiency gap is known as the "green-yellow gap" [1-4]. Because AlInGaP alloy in this spectral range is an indirect bandgap material, a significant improvement of the luminescence efficiency of green and yellow InGaN LEDs is crucial.

InGaN alloys at a high indium mole fraction often lead to a low crystalline quality because of indium aggregation or phase separation

[5–7]. Spinodal decomposition produces quantum-dot-like structures which form spatial potential fluctuations and localized states for trapping carriers [5–7]. It is claimed that the electroluminescence emissions come from the recombination of localized excitons in Inrich InGaN clusters [8–12]. In addition, threading dislocations (TDs) and stacking faults (SFs) are commonly observed in GaN-related compounds grown on sapphire. A TD or a SF usually terminates on the sample surface with a V-shaped defect [13–15]. The V-shaped defects are easily formed in the high-indium-content InGaN/GaN multiple quantum wells (MQWs) and triggered by TDs in the buffer layer [13–15]. These defects are formed because of strain relaxation associated with stacking faults or indium aggregation [16–18].

It was shown that the quality of InGaN/GaN MQWs was improved by reducing the density of V-shaped defects through the growth interruption technique [19,20]. By introducing growth interruption at high growth temperature, atoms can relax into the minimum energy sites to approach thermal equilibrium. Due to the thermal annealing effect, strain relaxation and indium desorption lead to decomposition of In-rich InGaN such that a flat InGaN surface and better InGaN/GaN quantum well structure were obtained. Hence, better quality of the InGaN layer and reduced defect density enhance the luminescence intensity [19,20]. Also, another growth interruption technique was proposed in our previous study [21]. During the growth interruption at each InGaN-well-

^{*} Corresponding author. Tel.: + 886 7 5919470; fax: + 886 7 5919357. *E-mail address:* swfeng@nuk.edu.tw (S.-W. Feng).

^{0040-6090/\$ –} see front matter 0 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.tsf.2011.04.004

to-GaN-barrier interface, only trimethylindium (TMIn) and NH_3 were allowed to flow into the reactor. This is called "TMIn treatment". By using TMIn treatment during the growth interruption, the reduced V-shaped defect density and surface smoothing process due to ambient TMIn result in a better InGaN/GaN quantum well structure. Hence, the internal quantum efficiency and output power of InGaN/GaN green LEDs are enhanced [21]. However, the impact of TMIn treatment time during growth interruption on the carrier dynamics of InGaN/GaN multiple quantum wells was not well studied.

In this study, the effects of TMIn treatment time during growth interruption on the emission and carrier dynamic characteristics of InGaN/GaN MQWs with green emission were investigated. With TMIn treatment, more homogeneous indium composition, higher effective potential level, higher energy (localized) states, stronger photoluminescence (PL) intensity, and an apparent *S*-shaped variation of the temperature-dependent PL peak position were observed. Because the indium composition within the InGaN quantum wells is more homogeneous the longer the treatment time in the TMIn-treated samples, weaker carrier transport and carrier-localized effects lead to shorter decay times and better recombination efficiency.

This paper is organized as follows: in Section 2, sample structures and experimental procedures are described. In Section 3, experimental results and discussion are reported. Finally, conclusions are drawn in Section 4.

2. Sample structures and experimental procedures

To study the effects of TMIn treatment during the growth interruption at each InGaN-well-to-GaN-barrier interface, four samples were grown on *c*-sapphire by low-pressure metal organic vapor phase epitaxy. The sample structures consist of a 30 nm GaN nucleation layer, a 1.5 µm GaN buffer layer, a 2.5 µm n-type GaN contact layer, and five GaN(15 nm)/InGaN(3 nm) MQWs. The substrate temperatures for the low-temperature GaN nucleation layer and high temperature GaN buffer layer were 530 and 1100 °C, respectively. The MQWs were grown at 780 °C. At each InGaN-wellto-GaN-barrier interface during the growth interruption, only TMIn and NH₃ were allowed to flow into the reactor. This is called "TMIn treatment". The details of growth procedures were described in the previous study [21]. With the same sample structures, three samples with different TMIn treatment times and one control sample (TMIn-Osec) without TMIn treatment were prepared. TMIn treatment times for the TMIn-60sec, TMIn-120sec, and TMIn-180sec MQW samples were 60, 120, and 180 s, respectively.

Experiments were conducted on all four samples. The structural properties of the samples were investigated by a high-resolution X-ray diffractometer (XRD). The surface morphology was revealed by atomic force microscopy (AFM) (Park Systems, XE-70) with a non-contact mode using a silicon tip of curvature less than 10 nm. PL measurements were carried out with the 325 nm line of a 50 mW He-Cd laser for excitation. For time-resolved photoluminescence (TRPL) measurements, a picosecond diode laser (PicoQuant) generated optical pulses of 100 ps width with a 5 MHz repetition rate to excite the epilayers. The excitation energy (wavelength) was 3.324 eV (375 nm) for pumping the InGaN wells. Light emitted from the sample was detected by a photomultiplier (PMT) and a monochromator. The signal from the PMT was recorded by means of time-correlated single-photon-counting technology (PicoQuant, Model TimeHarp 200). The overall time resolution was 50 ps. The samples were placed in a cryostat for lowtemperature measurements.

3. Results and discussion

3.1. XRD and AFM results

Fig. 1 shows the XRD patterns for the four samples. The diffraction peaks corresponding to GaN, InGaN, and InN can be identified [5]. The

Fig. 1. XRD patterns for the TMIn-0sec, TMIn-60sec, TMIn-120sec, and TMIn-180sec samples.

GaN diffraction peak is mainly from the contact and barrier layers. The side shoulder with a broad distribution below the GaN main peak is attributed to InGaN with various indium contents, sizes, and shapes in the quantum wells. This suggests indium aggregation in the quantum well region. With a longer treatment time (except for the TMIn-180sec sample), a narrower width and a slightly decreasing position of GaN diffraction peak with a smaller side shoulder are observed. Because indium diffusion into the barrier region in the TMIn-treated samples is suppressed, a better quantum well structure is observed. The indium composition in the well region becomes homogeneous. A slightly decreasing position of the GaN main peak implies strain relaxation inside the quantum well region. For the TMIn-180sec sample, due to the solubility limit of indium in GaN, the suppressed diffusion of indium atoms leads to a decomposed phase consisting of InN and slightly broad InGaN distribution. Slight phase separation and indium aggregation reoccur. The weak peak around 33° represents InGaN with 30-35% indium content in the well region.

Fig. 2 shows the surface morphologies of the four samples as revealed by AFM. With TMIn treatment, the surface morphologies of the TMIn-60sec and TMIn-120sec samples become smooth and the density of V-shaped defects decreases. The postulate that TMIn treatment improves material quality and enhances the internal quantum efficiency and output power of InGaN/GaN green LEDs is confirmed. For the TMIn-180sec sample, slight phase separation and indium aggregation result in a little rough surface morphology.

3.2. PL results

Fig. 3(a) shows the PL spectra as functions of temperature for the TMIn-Osec sample. UV and green emission bands were both observed for the four samples (Fig. 3(b)). The UV band was attributed to *p*-GaN while the green band comes from the InGaN/GaN MQWs [22]. Due to nonradiative recombination, the intensities of PL spectra show a decreasing trend at higher temperature(s). In addition, Fig. 3(b) shows normalized PL spectra of the four samples at 10 K. As TMIn treatment time increases, the spectrum shows a slightly blue-shifted peak position. By using TMIn treatment during the growth interruption, the annealing effect leads to more homogeneous indium composition inside the quantum wells so that the effective potential level in the quantum well becomes more homogeneous and slightly higher. Hence, as TMIn treatment time increases, the peak position is slightly blue-shifted.

Fig. 4(a) shows the integral intensity as a function of temperature for the four samples. The integral intensities of UV emission for the four samples are nearly equal, while with a longer TMIn treatment time, a larger integral intensity of green emission is observed. Due to the same p-i-n device structure, the p-GaN layer is presumed to contribute the same intensity of UV emission. The stronger integral intensity of green emission for the TMIn-treated samples suggests better quantum well structures and a reduced V-shaped defect Download English Version:

https://daneshyari.com/en/article/1668582

Download Persian Version:

https://daneshyari.com/article/1668582

Daneshyari.com