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A new method for theoretical analysis of the self-heating kinetics for monomolecular exothermic reactions
has been proposed. It has been shown, that consideration of the phase trajectories of reaction in the phase
plane: the heating rate — temperature enables detection of the qualitative changes of the phase portrait
under the changes of the Todes or Semenov criteria. This gives a possibility to analyze the diversity of var-
ious reaction modes for any reaction order. From this point of view, the classical Semenov theory of ther-
mal explosion developed for zero-order reactions is a particular case. As an illustration of this method, the
detailed phase trajectories analysis has been performed for the case of first-order reactions. The regions of
the thermal explosion degeneration, fastest reaction mode region and transition regions have been estab-
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lished. The necessary and sufficient conditions for the thermal explosion have been formulated.
Examples of the application of the method for calculation of specific reactions are presented; the com-
parison with the classical theory is performed.
© 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Determination of the conditions of an exothermic reaction real-
ization in the progressive self-heating mode (thermal explosion
mode, TE) is one of the most important problems of the current
combustion theory. In accordance with the classical theory devel-
oped by Semenov [1-3], the condition of TE means impossibility
of thermal equilibrium between the exothermically reacting sys-
tem and its environment. During TE, the burn-up of reactants leads
to the decrease in the heating rate due to the kinetic inhibition by
the reaction products. Nevertheless, in terms of the classical the-
ory, realization of TE is possible in the case of sufficiently small
burn-up of the initial reactants during preheating. This is the rea-
son why the specific features of the products formation kinetics
(the kinetic function structure) do not matter during preheating.
This is determined by the small value of the Todes criterion [4].
Smallness of the Todes criterion is a basic assumption of the clas-
sical TE theory. In this case, the critical conditions for TE can be
found from the condition of balance between the rate of heat re-
lease and rate of heat removal without taking into account a
burn-up. This approximation allows obtaining the analytic expres-
sions for the TE critical conditions, calculation of the critical value
of the ambient temperature and corresponding critical heating of
the reacting system [1-4]. However, we must bear in mind that
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the steady-state heat balance mentioned above is impossible with
consideration process of the burn-up. Indeed, the rate of a homoge-
neous chemical reaction is determined by the law of mass action.
Therefore, it is necessary to take into consideration both the heat
balance equation and the equation of chemical kinetics in general
case. Thus, the critical value of Semenov criterion must depend on
the value of Todes criterion. However, the analytical solution of
this problem is connected with some mathematical difficulties.
For this reason, the thermal explosion theory was developed with
the help of approximate analytical [5-8] and numerical methods
[9-12]. At the same time, a qualitative analysis of these critical
phenomenon is possible in terms of the dynamic system theory
with considering the phase trajectories of self-heating process on
the corresponding phase planes (the phase portrait reconstruction)
[13]. In this paper, we suggest a method for analysis of self-heating
modes of exothermically reacting systems in terms of the non-sta-
tionary thermal explosion theory by the studying of the structures
of the phase trajectories.

2. Basic equations and parameters

The classic system of the self-heating dynamics and the product
formation kinetics equations for homogeneous n-th order reactions
can be written in the dimensionless form as follows [13]:
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where 7T=t/t,y is the dimensionless time; t, = cRTf) exp
(E/RT,)/QEkyp™ ! is the adiabatic reaction time; ® = E(T — T) /RT3
is the dimensionless temperature; Ty is the initial (ambient) temper-
ature; y is the conversion depth (or fraction reacted);
0 = tqq/t_,t_=cpV/aS is the characteristic heat removal time; V is
the volume of the reacting system; S is the area of the sample sur-
face; c, p are the specific heat capacity and density of the reactant,
respectively, « is the heat transfer coefficient; y = Td = cRT%/QE is
the Todes criterion [4]; E is the activation energy; Q is the heat of
reaction; kg is the pre-exponential factor. It was assumed that the
condition RTy/E < 1 was holds.

It is well known, that the classical theory gives exact values of
the critical parameters for the zero-order reactions at n=0 [1-4]:

O=1, s=c¢e (2)

However, results Eq. (2) are approximately valid under condi-
tion y <« 1, (because the burn-up of a reagent has no significant ef-
fect on the heat balance on this condition) and hence y < 1 during
preheating. This condition, however, is not clearly defined. There-
fore, it is necessary to investigate the kinetics of self -heating pro-
cess at any value of y and to establish the relationship between
critical value of Todes criterion and Semenov criterion. This prob-
lem was not considered in Semenov theory and is analyzed below.

Let us find y from the first equation of the system (1) and sub-
stitute into the second equation; simultaneously, let a new variable
u =d@e/dt (heating rate) be introduced. As a result, we obtain:
u%: W +ou(O@ —1) —yn(u+60)*> " exp(@/n) 3)
For the further analysis, it is convenient to transform Eq. (3) to a re-
duced one-parameter form. After the introduction of new variables

¢=u/s, and 5 = yns~ /", we obtain the equation:
LAdE o . -
= HEO -1 —nE+ 0y exp(/n), (4)

with the initial condition: ® =0, ¢=1/4.
3. Phase trajectories analysis
3.1. Overall analysis
Eq. (4) determines the dependence of the heating rate on tem-

perature, or the phase trajectories in the plane ¢-@®, and describes
all monomolecular reactions of any order (including fractional

4

Fig. 1. Inflection isoclines of phase trajectory (4) for monomolecular reactions of
various order (solid lines) at #=0, 1. 1, 2 - Schematic representation of
corresponding phase trajectories. (a-c) The extremum points of the phase trajectory
(inflection points on the thermogram).

orders). This is the Abel equation of the second kind, which cannot
be integrated by quadratures. However, the equality to zero of the
right hand side of Eq. (4) determines a family of inflection isoclines
on thermograms (dependence ©(t)), or extrema of the phase tra-
jectory &(n, ©):

&+¢0-1)-n(+6) "exp(@/n) =0 ()

The solution of algebraic Eq. (5) gives an expression for these iso-
clines &(®, n, n), as illustrated by Fig. 1. Obviously, qualitative fea-
tures of the heating process are determined by the intersection of
the phase trajectory ¢(®) and inflection isocline &(®).

Let us consider some particular cases:

1. n=0 (Semenov theory). The proposed method of analysis
allows us to consider the problem in the plane ¢-@. If n=0
and 5 = 0, the solution of Eq. (5) takes the simplest form

(=1-0 (6)

As it is seen in Fig. 1, the phase trajectory has the minimum
point (point a). This point appears due to the influence of the heat
removal. Obviously, the minimum point appears under conditions:
& =0, © =1 and with the use of the first equation of the set (1) at
y = 0 the well-known critical conditions (2) can be obtained.

2. n> 0, The extreme points can be observed on the phase trajec-
tory, Fig. 1a. The appearance of the high temperature maximum
point c is associated with the influence of the kinetic inhibition
which prevents the unlimited growth of the temperature. The
appearance of the minimum point b is associated with the influ-
ence of the heat removal. However, the point b does not always
exist on the phase trajectory. Therefore, it is necessary to inves-
tigate the Eq. (5) for the presence of a minimum. By differenti-
ating the expression (2) with respect to temperature ® under
condition d¢;/dt = 0 we can obtain:

G=n(+6)""2—1/n+ (& + 0)/n] exp(6/n) ()
Egs. (5) and (7) determine the conditions for the existence of a

minimum on the inflection isoclines. Combined consideration of

Egs. (5) and (7) gives:

fmin :f(n) - @: (8)

where &y is the ordinate of the minimum point on the isoclines

(Fig. 1), fin) is the function which depends only on the order of
the reaction:

fmy =1+ (\/nz +4n - n)/z 9)
The substitution Eq. (8) into Eq. (5) gives:
f-6=nf""exp(O/n)/(f - 1) (10)

The graphical solution of this transcendental equation is presented
in Fig. 2, where:

@(n.n) =nf>"""/(f = 1) (11)

As it is seen in Fig. 2, only one minimum point is present on the iso-
cline when f; > ¢. The minimum point disappears when @ =0 and
f=¢. Returning to the variables 7, §, the condition for the existence
of a minimum (f; > ¢) can be written as follows:

y < VMFURN(F — 1) /n = 5""i(n) (12)
where:
An) =fU"N(f = 1)/n (13)

From Eq. (13), we have /= 0,62 for the first order reactions and
/.= 0,24 for the second order reactions.
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