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A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using
the Poisson–Boltzmann equation. An effective screening radius similar to the Debye decay length is introduced
to define the local composition and new boundary conditions for the central ion. The crystallographic ion size
is also considered in the activity coefficient expressions derived and non-electrostatic contributions are
neglected. Themodel is presented for aqueous strong electrolytes and comparedwith the classical Debye–Hückel
(DH) limiting law for dilute solutions. The radial distribution function is compared with the DH andMonte Carlo
studies. Themean ion activity coefficients are calculated for 1:1 aqueous solutions containing strong electrolytes
composed of alkali halides. The individual ion activity coefficients andmean ion activity coefficients inmixed sol-
vents are predicted with the new equations.
© 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

The Debye–Hückel (DH) limiting law [1] is a monumental work for
electrolyte systems, followed by many equations developed for these
systems. Although it gives a good description for physical properties
for dilute solutions, it fails at high concentrations for real systems. An-
other defect is ignoring the size of ions, leading to large deviations
from real physical behavior. Fowler andGuggenheim [2] have improved
theDH theorywith the Güntelberg chargingmodel, with the central ion
and ion atmosphere being charged simultaneously. The equation can be
applied for electrolyte systems up to 0.1 mol·kg−1, even in mixed sol-
vent systems. Bromley [3] has introduced one more empirical term for
ionic strength, which can be applied for solutions at concentrations up
to 6mol·kg−1. Mayer [4] has developed a DH equationwith a statistical
treatment of ion–ion interactions, based on his theory of clusters of real
gases. Stokes and Robinson [5] have proposed the well known ionic
hydrate model for aqueous electrolyte systems at high concentra-
tions, assuming that the electrolyte dissociates and reaches ionic sol-
vation equilibria (chemical reaction) in the solution, fitting the ionic
hydrate numbers of water molecules and correlating the mean ion
activity coefficients of electrolytes from 0.1 to 4 mol·kg−1 with ex-
perimental data.

In the 1970s, themean spherical approximation (MSA) [6,7] was de-
rived from the Ornstein–Zernike integral method. It is based on the

linear Poisson–Boltzmann equation with an analytical solution for the
central ion and surrounded ionic cloud with finite size. The MSA has
been applied for the calculation of departures of real systems from
ideal ionic solutions, with the solvent as a dielectric continuum, called
primitivemodel. Ion radius and dielectric constant are fitted for osmotic
coefficients and activity coefficients of strong electrolyte solutions
[8–10]. In the correlation, the Pauling diameters are usually chosen for
the anion, while cation diameters are set as adjustable parameters for
the ionic strength. All these attempts exaggerate the size of smaller cat-
ions, which is interpreted as hydration. For larger ions, smaller diame-
ters are obtained, sometimes even smaller than crystallographic
diameters, which is difficult to be accepted. Simonin et al. [11,12] have
taken into account the concentration-dependent solvent permittivity
with the effect on the Helmholtz energy of the system, providing a bet-
ter description for real electrolyte systems. Besides, theMSA and ion as-
sociation have been applied together for 1:1 electrolytes in water with
adjustable ionic diameters and associate constant [13]. The MSA ap-
proach is also combined with the modified non-random two-liquid ap-
proach [14]. It is suitable for the description ofmixed-solvent electrolyte
systems.

Outhwaite [15,16] has proposed a modified Poisson–Boltzmann
(MPB) equation to fit the ion size and exclusive volume of cloud ions.
The radial distribution function is represented as a symmetric function
when ion species have different valences or ionic radii. Comparisons
of the hypernetted chain closure (HNC) integral equation and Monte
Carlo (MC) method for systems with different ion sizes [17] indicate
that the symmetric Poisson–Boltzmann (PB) expression is viable for
the primitive electrolyte model at low concentrationswith high quality.
Molero et al. [18] have made great efforts to examine the meaning of
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individual ion activity coefficients using the MPB equation and com-
pared them with the MSA, HNC and MC simulations. It is found that
the electric part of activity coefficient for single ion declines monotoni-
cally with the increases of ratio of cation to anion ionic size. Kjellander
and Mitchell [19] define a long range contribution as a charge distribu-
tion like “dressed ion”, called dressed ion theory (DIT), which follows
the DH expression. It assumes an effective point charge instead of bare
charge of ions, a decay length instead of DH length, and so on. With
these renormalized assumptions the entire theory can be cast in a linear
PB form. Varela et al. [20] have exploited thedressed ionmodel to obtain
static structure factors of bulk electrolytes or colloid systems and em-
phasized that the DIT is an exact theory, applicable for all primitive
model systems with symmetric and non-symmetric electrolytes. It ex-
tends the classical DH theory considerably and the results are valid
from low to finite concentrations. This theory is particularly useful in
explaining concentrated electrolyte solutions, colloid media, double-
layer, and interfacial phenomena in surfactant physics. On the basis of
modern density functional analysis, Abbas and Nordholm [21] have
considered long-range electrostatic interactions and short-range ion
size effects by a generalized van der Waals analysis, named the
corrected Debye–Hückel (CDH). In this theory, all ions are assumed to
have the same diameter for symmetric salts, macro-ions or planner sur-
faces, with the excluded volume effect vanishing in the linear response.
A mean diameter of cation and anion according to the original DH the-
ory is used to fit experimentalmean ion activity coefficients and osmot-
ic coefficients up to 1 mol·kg−1. A new approach to consider the ion
size of strong electrolyte has been made by Fraenkel [22], using the
distance of closest approach between opposite ions in the DH
treatment and defining another second distance of closest approach
of similar ion, called the Smaller-ion Shell model. It is a DH level
modification based on the LPB equation, providing some analytical
expressions for real electrolyte systems regarding ion sizes, ion
charges, and ion charge asymmetry. Although it is somewhat empir-
ical and complex in two specially defined ionic cases, it can be used
directly to correlate experimental activity coefficient data with ad-
justable parameters instead of numerical commutation such as inte-
gral equation methods.

The objective of this work is to develop a new mean ion activity
coefficient expression for strong electrolyte systems to describe ion
size contribution based on the Poisson–Boltzmann equation. Cations
and anions are considered as charged hard spheres of unequal size
dissolved in solvents. The ion size is more close to the real crystallo-
graphic diameters compared to other theories mentioned above by
fitting those as adjustable parameters. The electrostatic potential
distribution around the central ion is analyzed by introducing an
ion atmosphere assumption similar to that in the DH theory, only
the electrostatic forces between ions are considered, and the solvent
is viewed as a continuumwith dielectric constant. New outer bound-
ary conditions for the PB equation are developed to obtain an analyt-
ical solution for electrostatic potential. The effective screening radius
is represented as an empirical expression of ionic concentration. The
derived mean ion activity coefficient equation is applied for single
salt in pure water, fitted with experimental data at 298.15 K. The in-
dividual ion activity coefficients and mean ion activity coefficients in
mixed solvent electrolyte systems are predicted with our model and
parameters.

2. Modeling for the Mean Ion Activity Coefficient

We start from single 1:1 strong electrolytes in pure water, with the
salt completely dissociating into ions, which are assumed as hard
spheres interacting through Coulomb forces in a dielectric continuum
solvent. For simplification, ion size and dielectric constant of solvent
do not vary with ionic concentration. Some theoretical relations used
here are based on the Debye–Hückel theory [1] and the solutions at
low and moderate concentrations are considered. We first recall some

of the Debye–Hückel theory to give a specific derivation of our model
and systems of alkali halides in water are investigated.

In the bulk thermodynamic relations of the Debye–Hückel theory,
the non-ideality of solution is mainly attributed to the ion–ion interac-
tions. The chemical potential for a given ion can be described as a sum
of an ideal term and an excess term representing the electrostatic
force. The relationship of chemical potential and activity coefficient of
ion has been given elsewhere [1,5,24].

μ j ¼ μ ideal
j þ μelectro

j ð1Þ

μelectro
j ¼ RT lnγj ð2Þ

Superscripts “ideal” and “electro” refer to the ideal solution and
electrostatic energy contribution, respectively, γj is the activity coeffi-
cient of ion j in the solution, R (8.314 kJ·kmol−1·K−1) is the gas con-
stant, and T (K) is the general absolute system temperature.

The problem starts from how to determine the contribution of elec-
tric energy to the chemical potential. The DH theory calculates the local
potential of an ion due to its ionic atmosphere and gives a radial distri-
bution function using the Boltzmann law for ion j in the ionic atmo-
sphere. The same expression for the charge density is used for ion j.

ρj ¼ ρj0 exp −
zjeψ rð Þ
kT

� �
ð3Þ

ρe rð Þ ¼ ∑
j
ρjzje ¼∑

j
zjeρj0 exp −

zjeψ rð Þ
kT

� �

¼ e∑
j
ρj0zj−

e2ψ rð Þ
kT

∑
j
ρj0z

2
j þ

e2ψ2 rð Þ
2k2T2 ∑

j
ρj0z

2
j þ⋯ ð4Þ

where ρe is the average charge density at distance r from the central ion
inmolar scale, zj is the valence of ion j, e (1.60218 × 10−19 C) is the fun-
damental electronic charge, ρj0 is the overall average concentration of
ion j (mol·cm−3), and ψ indicates the local electrostatic potential out-
side the central ion. In Eq. (3), the Boltzmann distribution function is
used to describe the concentration of ions around the central ion rela-
tive to the distance from the central ion. The thermal kinetic energy kT
is assumed greater than the electrostatic energy zjeψ(r), similar to that
in the DH theory. The term e∑ρj0zj must be equal to zero, which indi-
cates the electroneutrality of the solution. Using the second term of the
Taylor series expansion in Eq. (4), the expression for the charge density
becomes

ρe rð Þ ¼ −
e2ψ rð Þ
kT

∑
j
ρj0z

2
j : ð5Þ

With the charge density ρe similar to the DH theory, the Poisson–
Boltzmann equation can be obtained.

∇2ψ ¼ Δψ ¼ ∂2ψ
∂x2

þ ∂2ψ
∂y2

þ ∂2ψ
∂z2

¼ −
4π
D

ρe ð6Þ

where D is the dielectric constant of solvent given by

D ¼ 4πε0εW ð7Þ

εW is the relative dielectric constant of water and εW = 78.3, 4πε0 =
1.11265 × 10−10 C2·N−1·m−2, and the Debye length κDH−1 is given by

κ2
DH ¼ 4πe2

DkT
∑
j
ρj0z

2
j : ð8Þ
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