FISEVIER

Contents lists available at ScienceDirect

Thin Solid Films

journal homepage: www.elsevier.com/locate/tsf

Hydrazine-based deposition route for device-quality CIGS films

David B. Mitzi ^{a,*}, Min Yuan ^a, Wei Liu ^a, Andrew J. Kellock ^b, S. Jay Chey ^a, Lynne Gignac ^a, Alex G. Schrott ^a

- ^a IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598 USA
- ^b IBM Almaden Research Center, 650 Harry Rd, San Jose, CA 95120 USA

ARTICLE INFO

Available online 6 November 2008

Keywords: CIGS Solar cells Non-vacuum Spin coating Thin-film Photovoltaics

ABSTRACT

A simple solution-based approach for depositing CIGS (Cu–In–Ga–Se/S) absorber layers is discussed, with an emphasis on film characterization, interfacial properties and integration into photovoltaic devices. The process involves incorporating all metal and chalcogenide components into a single hydrazine-based solution, spin coating a precursor film, and heat treating in an inert atmosphere, to form the desired CIGS film with up to micron-scaled film thickness and grain size. PV devices (glass/Mo/CIGS/CdS/i-ZnO/ITO) employing the spin-coated CIGS and using processing temperatures below 500 °C have yielded power conversion efficiencies of up to 10% (AM 1.5 illumination), without the need for a post-CIGS-deposition treatment in a gaseous Se source or a cyanide-based bath etch. Short-duration low-temperature (T<200 °C) oxygen treatment of completed devices is shown to have a positive impact on the performance of initially underperforming cells, thereby enabling better performance in devices prepared at temperatures below 500 °C.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Low-cost processing techniques for photovoltaic (PV) device fabrication-especially for the active absorber layer-are critically needed to enable PV technology to become cost competitive with conventional electricity generation [1]. $Cu_{1-z}In_{1-x}Ga_xSe_{2-v}S_v$ (CIGS) represents one of the leading absorber layer candidates for achieving a cost competitive (on a \$/W basis) thin-film technology, primarily because of the demonstrated potential for high power conversion efficiencies (up to ~20%) and for incorporating relatively high levels of device performance into a variety of useful form factors (e.g., building materials and mechanically flexible devices) [2,3]. Despite offering great promise, the complicated nature of this material generally renders the deposition process quite complex and therefore time consuming/costly. Most high-efficiency CIGS PV devices are deposited using multistep vacuum-based deposition processes (e.g., sputtering or evaporation) [4–6]. While reasonably low-cost CIGS solar modules can be produced using the vacuum-based techniques, the high initial capital investment for implementing these processes, coupled with uniformity issues over larger-scale substrates, has triggered a growing interest in developing potentially lower-cost solution-based CIGS deposition approaches [6-15].

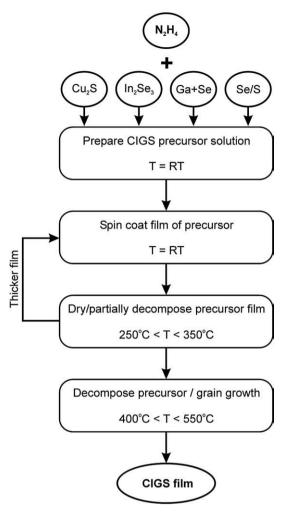
Several solution-based approaches have been demonstrated for CIGS deposition, including electrochemical [7–9], spray or spin coating of organometallic precursors [10,11], screen printing of CIGS or component metal pastes [12,13], and printing of nanoparticle-based precursors [14,15]. A number of processing issues arise in these

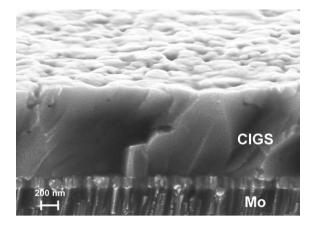
approaches, however, including: 1) removing undesirable film impurities that derive from the selected precursor and solvent (e.g., O, C, Cl), 2) getting rid of the need for a high-temperature post-deposition treatment in a gaseous selenium source (e.g., H2Se) or in a cyanidebased bath, 3) simplifying or reducing the number of steps required to deposit high quality films, and 4) improving the compositional control and quality of the solution-processed CIGS films so that higher efficiency devices can be achieved. Here we focus on a new hydrazine-based precursor approach for depositing CIGS and related chalcogenide-based absorber layers [16]. Deposition involves dissolving the elements in a hydrazine-based solvent, spin coating the precursor solution into thin-film form, and heat treating the precursor film in an inert atmosphere to yield the targeted CIGS layer [16-19], with no need for high-temperature post-deposition selenization treatment [4] or a cyanide bath etch step [20] to correct phase purity, stoichiometry and grain size. In contrast to our earlier report [16], which focused on initial PV device results for films processed above 500 °C, this report will provide more detailed characterization of the CIGS films and interfaces, as well as demonstrate how low-temperature treatment in an oxygen atmosphere can improve the performance of the solution-deposited CIGS devices with processing temperatures constrained to T<500 °C.

2. Experimental details

All CIGS film processing was performed in a nitrogen-filled glove box with water and O_2 levels maintained below 1 ppm. Note that hydrazine is highly toxic and should be handled using appropriate protective equipment to prevent contact with either the vapors or liquid.

^{*} Corresponding author. Tel.: +1 914 945 4176; fax: +1 914 945 2141. E-mail address: dmitzi@us.ibm.com (D.B. Mitzi).




Fig. 1. Schematic flow diagram for the hydrazine-based CIGS deposition process.

2.1. Thin-film formation

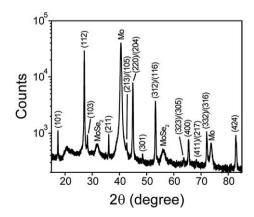
CIGS $(Cu_{1-z}In_{1-x}Ga_xSe_{2-y}S_y)$ precursor solutions were prepared by dissolving the components (i.e., Cu_2S , In_2Se_3 , Ga, S, Se) in hydrazine at room temperature, as described in more detail in [16]. Extra Se was generally included in the solution to improve film morphology and to control the Se: Se ratio in the resulting film. CIGS films were spin coated onto molybdenum-coated 2.5 cm $\times 2.5$ cm soda lime glass substrates (0.1 cm thickness) using the precursor solutions. The films were immediately dried and partially decomposed for 5 min at 290 °C on a preheated hot plate, followed by a final heat treatment at a selected temperature of between 400 and 500 °C. When thick (μ m-scaled) films were desired for device structures, sequential layers were deposited using the same solution for each layer (typical film thickness per deposition layer is ~ 100 nm) [16].

2.2. Device fabrication

The device structure was formed on Mo-coated (~700-nm-thick layer) soda lime glass employing a ~1.3-µm-thick CIGS absorber layer, deposited as described above using 12 deposition cycles and a final heat treatment at 490 °C for 30 min. The device was completed with ~50 nm of chemical bath deposited CdS, 70 nm of sputtered intrinsic ZnO, followed by 200 nm of sputtered ITO (indium tin oxide). The sheet resistance of the ITO layer (on a glass slide without the other layers) was 50–60 Ω /sq, as measured using a 4-point probe method, and the transparency in the visible spectral range was >80%. Finally, a patterned Ni (50 nm)/Al (2 µm) grid was deposited on the top of the device to facilitate collecting the photo-

Fig. 2. Cross-sectional SEM image of a CIGS film, processed using 8 deposition cycles and a final 45 min heat treatment at 450 °C. Nominal film composition, as measured using RBS and PIXE, is $\text{CuIn}_{0.7}\text{Ga}_{0.3}\text{Se}_{1.9}\text{S}_{0.2}$. The experimental uncertainty in stoichiometry for each element is ~0.05.

generated carriers. Each device $(0.45 \text{ cm}^2 \text{ total area})$ was separated from neighboring devices (four per substrate) by mechanical scribing. Selected completed devices were further processed by annealing in a tube furnace at 180 °C under flowing O_2 for between 2 and 20 min to examine the effect of this treatment on device performance.


2.3. Characterization

For all device depositions, corresponding CIGS films deposited on oxidized silicon using the same spin-coating solution and deposition conditions were analyzed by a combination of RBS (Rutherford Backscattering Spectrometry) and PIXE (Particle Induced X-ray Emission) to verify that the targeted composition was obtained. RBS was performed using an NEC 3UH Pelletron, with a beam current of 20 nA at 2.3 MeV, while PIXE was performed using the same machine with 1.1 MeV protons. The PV devices were electrically tested using a Hewlett-Packard 4145B semiconductor analyzer under ambient temperature/ atmosphere conditions. Simulated sunlight was applied using a 300 W (Xe lamp) Oriel Solar Simulator with AM1.5 filter. The light source was calibrated to 100 mW cm⁻² using a NIST-calibrated Eppley thermopile, as well as an Oriel reference solar cell (NREL calibrated).

3. Results and discussion

3.1. Hydrazine-based deposition process

The first step of the hydrazine-based deposition process (shown schematically in Fig. 1) consists of dissolving each component metal

Fig. 3. Powder X-ray (Cu K α radiation) diffraction from the solution-deposited CIGS film shown in Fig. 2, with reflection indices indicated for the CIGS phase.

Download English Version:

https://daneshyari.com/en/article/1671148

Download Persian Version:

https://daneshyari.com/article/1671148

<u>Daneshyari.com</u>