FISEVIER

Contents lists available at ScienceDirect

Thin Solid Films

journal homepage: www.elsevier.com/locate/tsf

Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography

T. Tsarfati ^{a,*}, R.W.E. van de Kruijs ^a, E. Zoethout ^a, E. Louis ^a, F. Bijkerk ^{a,b}

ARTICLE INFO

Available online 26 September 2009

Keywords: Multilayer Lithography X-FEL GIXR TEM XPS

ABSTRACT

Reported is a computational and chemical analysis of near normal incidence reflective multilayer optics for 6.7 nm wavelength applications in e.g. the Free Electron Laser FLASH and next generations of EUV lithography. We model that combinations of B or B₄C with La offer a reflectivity of ~70%. The small reflectivity bandwidth poses problems in applications, but it can be significantly improved by replacing La with Th or U. Grazing incidence X-ray reflectometry, cross-section TEM, and in-depth XPS analysis of B/La and B₄C/La multilayers reveal chemical reactivity at the interfaces. Significant LaB_x interlayer formation is observed in especially B/La multilayers, stressing the relevance of interface passivation. We propose nitridation of the interfaces, which mitigates interlayer formation and simultaneously increases optical contrast.

© 2009 Elsevier B.V. All rights reserved.

We present a computational and experimental survey of multilayer optics to maximize reflectivity around the 6.7 nm range at near normal angle of incidence (AOI). New short wavelength radiation sources, e.g. Free Electron Lasers (X-FELs) and next generations of Extreme UV lithography call for high reflectivity optics, in most cases preferably at near normal AOI [1].

Fig. 1 shows some reported reflectivity values (R) in the 2 to 20 nm wavelength and 0° to 5° AOI range [2]. We will here concentrate on optics for $\lambda = 6.7$ nm, the position of the boron K absorption edge, where B and B₄C can act as low absorbing spacer layers. Several studies have shown that, compared to B₄C/Mo, B₄C/La multilayers offer significantly better reflectivity at relatively grazing AOI [3–5], with applications in e.g. soft X-ray spectroscopy, fluorescence analysis and imaging.

Fig. 2 shows the calculated reflectivity curve at 1.5° off normal AOI for the best candidate quarter-wave multilayers, assuming a 0.3 nm interface diffuseness which is conventional fur Mo/Si multilayer optics in EUV lithography [6]. Somewhat inferior candidates include B and B_4C combinations with e.g. CsI and LaF_3 . The number of periods is 200, the effective maximum that contributes to reflectivity. IMD simulations [7] show that the reflectivity bandwidth is only ~ 0.06 nm for the B_4C/La multilayer, which is $\sim 11\%$ of the Si/Mo multilayer reflectivity bandwidth for 13.5 nm EUV. When B or B_4C is combined with Th or U, simulations indicate significantly larger bandwidths of 0.09 and 0.17 nm respectively, due to the higher optical contrast at the interfaces. AFM and TEM studies on AI/U and SI/U multilayers have

revealed that these systems yield an interface diffuseness of $\sim\!0.5$ nm [8]. Radioactivity hazard of Th or U is calculated to be of no significance in mirror applications [9,10]. Most multilayer deposition setups do however not accommodate experimental research with these metals and we will therefore here consider only experimental B/La and B₄C/La multilayers.

A reflectivity of 53% at 65.5° off normal AOI with 50 periods [3] and 39.3% at 75.0° off normal AOI with 150 periods [11] has been reported at $\lambda = 6.77$ nm. We can model these results with a B₄C/La bilayer structure with interface diffuseness up to 0.75 nm, which might be attributed to polycrystallinities. We will show that the high chemical activity of La with B and C results in significant interlayer formation, explaining the experimental data.

The presence of nano-size crystallites [12] was investigated with grazing incidence X-ray reflectometry (GIXR) spectrum at $\lambda = 0.154$ nm (Cu-K $_{\alpha}$) for two B/La and a B₄C/La multilayer that were produced with our multilayer deposition facilities [13], as shown in Fig. 3. The inset in Fig. 3 shows the cross-section transmission electron microscopy (CS-TEM) image of the B₄C/La multilayer.

The GIXR peaks at 27.3°, 56.3°, and 77.2° in Fig. 3 can originate from crystalline La <100>, La <200>, and La <210> planes respectively. The relative shifts of up to 5% for especially the non B₄C-containing multilayers would however indicate considerable lattice stress or distortions due to formation of broad LaB₆ interlayers at the reactive interfaces. The absences of 2nd order peaks in the spectra suggest an amorphous structure for all three multilayers with a general nearest neighbor distance only. Also CS-TEM reveals no crystallinity in the multilayers, but we can observe an increasing lateral waviness of the layers from bottom to top. This is likely caused by relaxation of the lattice stress due to the significant lattice parameter differences

^a FOM Institute for Plasma Physics Rijnhuizen, 3430 BE Nieuwegein, The Netherlands

^b MESA + Institute for Nanotechnology, University of Twente, Enschede, The Netherlands

^{*} Corresponding author. Tel.: +31 30 609 6987; fax: +31 30 603 1204. E-mail address: t.tsarfati@rijnhuizen.nl (T. Tsarfati).

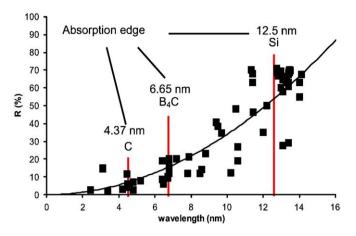
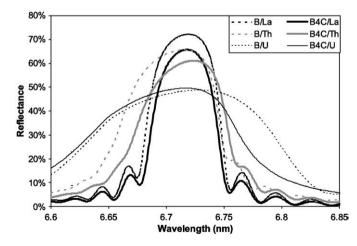
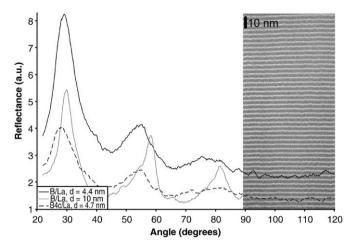
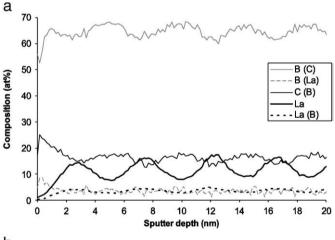



Fig. 1. Reported $\it R$ for 0° to 5° off normal AOI. C, $\it B_4C$ and Si absorption edges are indicated.


[14]. We do observe La crystallization of 7 nm thick La layers in CS-TEM. The B_4C -on-La interfaces appear to be more diffuse than La-on- B_4C interfaces, attributable to the lower surface free energy of La, compared to B and B_4C [15–17].

GIXR measurements of the B_4C/La multilayer suggest a ~ 0.67 nm interface diffuseness [15,18,19] or up to 1.5 and 0.5 nm thick kinetically favorable LaB₆ and LaC₂ interlayers at the B₄C-on-La and La-on-B₄C interface resp. In-depth X-ray photoelectron spectroscopy (XPS) analysis of Mo/Si multilayers with B₄C diffusion barriers reveal a B-rich stoichiometry, while C appears to be more diffused and weakly bounded [20]. The experimental results show reactive interfaces when B₄C is used in multilayer applications, and stable metal borides and carbides appear indeed to be favored over B₄C. Metal boride formation at the cost of B₄C has also been observed by P. Mogilevsky et al. [21].

With in-depth XPS analysis by 0.5 kV Ar^+ sputtering, we observe considerable intermixing of B and B₄C with La, as can be seen in Fig. 4 for the B/La and B₄C/La multilayer with a *d*-spacing of 4.4 and 4.7 nm respectively. The multilayer profiles shown in Fig. 4 can be reconstructed using the mixing-roughness-information depth (MRI) model [22–25] with a calculated atomic mixing (g_w) of 2 nm and an information depth (g_λ) of 3 nm in linear approximation. We model a bilayered structure with 1.2 nm thick B and La layers for the B/La, and 2.8 nm thick B₄C and 1.6 nm thick La layers for the B₄C/La multilayer. The reconstruction does not suggest significant interface gradients, although we observe a second La4d doublet at ~3.5 eV lower binding energy. Although XPS literature on La is very limited, this doublet might be attributed to LaB₆ and LaC₂ that are diffusely distributed



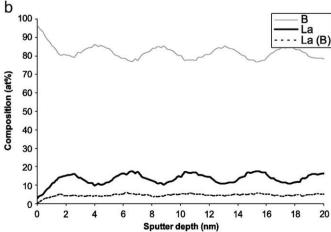

Fig. 2. Calculated reflectivity curves of the best performing 200 period multilayers at 1.5° off normal AOI, assuming 0.3 nm interface diffusiveness.

Fig. 3. GIXR at $\lambda = 0.154$ nm (Cu-K $_{\alpha}$) of three multilayers. The inset shows the CS-TEM image of the B₄C/La multilayer.

throughout the multilayers. Taking also GIXR, CS-TEM, angular resolved XPS measurements [26,27], formation enthalpy (ΔH^{for}) and optical constants as shown in Table 1 into account, we model an interface gradient that can be attributed to formation of LaB₆ and LaC₂, predominantly at the La layer front. This suggests atomic deposition of B and C [28], since incorporation of the dissociation of B₄C in the reaction via $7\text{La} + 6\text{B}_4\text{C} \rightarrow 4\text{LaB}_6 + 3\text{LaC}_2$ practically cancels out any energy gain. La deposition onto an already recombined B₄C substrate

Fig. 4. In-depth XPS analysis of a B_1 La (a) and B_2 C/La (b) multilayer, with 4.4 and 4.7 nm d-spacing respectively. In brackets are the species to which they are likely bonded.

Download English Version:

https://daneshyari.com/en/article/1671842

Download Persian Version:

https://daneshyari.com/article/1671842

<u>Daneshyari.com</u>