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A simple method is depicted in this communication to determine the optical constants of transparent thin
films from transmittance versus wavelength traces, showing no fringes, for evaluating thickness. The strength
of this technique is apparent when applied to Zn1− xMgxO films.
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1. Introduction

Accurate knowledge of the wavelength dependent optical con-
stants of thin films is very much essential from both academic and
technological standpoints for obtaining fundamental information
about its optical behaviour and material properties and in order to
put it into device application. Apart from ellipsometric studies,
simultaneous determination of the thickness (d) of the thin film and
obtaining information about its complex refractive index (η=n+ ik,
where n=refractive index and k=extinction coefficient) is quite
difficult experimentally as in most practical cases the transmittance
traces are devoid of interference fringes which are generally employed
to determine the thickness of the films. This problem is more
aggravated in the case of nanocrystalline materials in thin film form.
Hence, to overcome this inadequacy, several alternative theoretical
models and experimental methods involving the determination of n, k
and d of thin films from optical spectra were developed [1–11]. In this
regard, different numerical techniques were proposed by considering
homogeneous, isotropic plane parallel model of thin film and
subsequently modified by considering the inhomogeneity and rough-
ness of the films [1–3]. Most of the theoretical techniques developed
so far required the knowledge of:

i. both transmittance (T) and reflectance (R) versus wavelength (λ)
data [8,9], or,
ii. a dispersion relation for the wavelength dependent refractive
index [10–12], or,
iii. special conditions like the presence of fringes in the optical
spectra of the thin film [13,14] or a combination of any of these.

All the methods mentioned earlier, except the one proposed by
Bhattacharyya et al. [4], thickness values were either supplied or
determined from the fringes appearing in the transmittance spectra.
Although the method presented by Bhattacharyya et al. did not
require thickness as input value but it needed to record the
transmittance (T), reflectance (R) measured from film side and
reflectance (R1) from the substrate side. Besides this, all the above
spectra have to be taken from the same area of the film that made the
technique a bit complicated one. Thus, requirement of an effective
theoretical model which would involve the least amount of experi-
mental data to yield useful results is still on the hot anvil. We present
here an approach for the evaluation of the optical constants like n, k,
dielectric constant along with thickness (d) just by recording the
transmittance spectra, containing no fringes, of a transmitting film.

2. Theoretical consideration

The Kramers–Kronig (KK) model seemed to serve this purpose
elegantly. Apart from the fact that KK model uses only a single
transmittance spectrum, it does not require any dispersion relation for
the wavelength dependent refractive index, thus making it a superior
choice for calculating the optical constants of thinfilm. The only difficulty
regarding the KK theory is that of recording the transmittance spectra
over a wide range of wavelength is necessary to obtain the best results.
Measurements in a moderate range of wavelength may also yield quite
useful results. But, one needs to have the thickness value as input for
evaluating the optical constants. Xue et al. [15] employed theKK theory to
obtain the spectral dependence of the real part of the refractive index and
the extinction coefficient and hence the real and imaginary part of the
complex dielectric constant for transparent ZnO:Al thin films with
different Al doping concentration. But, in their computation the thickness
of the films was measured separately and taken as input to obtain the
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optical parameters. In this section, we put forward another method for
the simultaneous computation of the optical parameters of transparent
thin film along with its thickness by using the same KK approach.

The real part of the refractive index, n(λ) of semiconductor
materials may be related to the optical absorption coefficient α(λ) and
using the KK model [16] one may write:

n λð Þ = 1 +
1

2π2

Z∞
0

α ψð Þdψ
1− ψ2

λ2

ð1Þ

where ψ is the running variable for the wavelength in the wavelength
range [0, ∞]. Henceforth, the wavelength dependent extinction
coefficient k(λ) may be related to the absorption coefficient as:

k λð Þ = α λð Þλ
4π

: ð2Þ

Correspondingly, the real and imaginary part of the dielectric
constants (ɛ=ɛ1+ iɛ2) may be related to the real part of the refractive
index and the extinction coefficient as:

e1 = n2 λð Þ− k2 λð Þ ð3Þ

and

e2 = 2n λð Þk λð Þ: ð4Þ

Hence, by knowing the values of the absorption coefficient over the
whole wavelength range, one may use Eqs. (1) and (2) to evaluate the
complex refractive index of the thin film and compute the complex
dielectric constants. But, the main problem lies in knowing the optical
absorption coefficient value over the wavelength range 0 and ∞. In
practice, any UV–VIS-NIR spectrophotometer would permit to
estimate α in only a finite optical range. Also, the optical absorption
coefficient is related to the transmission coefficient as:

T = exp −α ψð Þdð Þ: ð5Þ

Hence, the crux of the problem lies in accurate estimation of the
film thickness in order to derive meaningful information about the
optical constants of the thin film. This would be possible by using the
method described below.

Thewavelength range [0,∞]may be split up into three differentparts,
viz., the low wavelength limit ranging from [0, λ1], the estimable
wavelength range [λ1, λ2] and the higher wavelength limit [λ2, ∞]. The
estimablewavelength rangewouldmeanhere the range of the spectra as
recorded byUV–VIS-NIR spectrometer. Then,writing Eq. (1) in the form:

n λð Þ = 1 + I ð6Þ

where,

I =
1

2π2

Z∞
0

α ψð Þ
1− ψ2

λ2

dψ: ð7Þ

The integral Imay be split up into three parts, I= I1+ I2+ I3, where,

I1 =
1

2π2

Zλ1

0

α ψð Þ

1− ψ2

λ2

dψ;

I2 =
1

2π2

Zλ2

λ1

α ψð Þ

1− ψ2

λ2

dψ; and

I3 =
1

2π2

Z∞
λ2

α ψð Þ

1− ψ2

λ2

dψ

ð8Þ

the integrals in each of the wavelength range needs to be evaluated
separately and then using Eq. (6) one may estimate n(λ). Once α(λ)
is known for a wavelength (λ), the calculation of k(λ) becomes
trivial.

In the lower wavelength limit where ψbλ1, the optical absorption
coefficient for direct band gap semiconductor near the band edge,
where the photon energy is greater than the band gap energy (Eg), is
given by:

α ψð Þ = A hv−Eg
� �1=2 ð9Þ

where h is the Plank's constant, ν=c/ψ, c being the speed of light,
and

A =
q2 2memh

me + mh

� �3=2

nch2me
: ð10Þ

Here, me is the electron effective mass, mh is the effective hole
mass, q is the electronic charge, and n is the refractive index of the
bulk material. Hence, putting this value of α in I1 (Eq. (8)), the
contribution of integral in the lower wavelength limit can be
estimated.

I1 =
1

2π2

Zλ1

0

A hc
ψ −Eg

� �1=2

1− ψ2

λ2

dψ ð11Þ

Integrating in the region hc
ψ N Eg, we obtain the analytical expression:

I1 =
Aλ
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Egλ + hc

λ

s ½π − 2 Arctg
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λ
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2
6664

3
7775�:

ð12Þ

In the estimable wavelength range [λ1, λ2], the absorption
coefficient can be calculated using Eq. (5) by taking any arbitrary
value of d. Putting this value of α(ψ) into Eq. (8), we obtain after
integration,

I2 =
1

2π2

Xλ2

ψ=λ1
ψ ≠ λ

α ψð Þ
1− ψ2 = λ2� �Δψ ð13Þ

where Δψ is the computation steps.
At the point ψ=λ, the value is,

Lim
ψYλ

1
2π2

α ψð ÞΔψ
1− ψ2

λ2

� �
2
4

3
5 =

α λð Þλ
4π2 : ð14Þ

Since the optical absorption is small in the higher wavelength limit
and there are no other absorption band in this region, hence, α(ψ) is
almost constant. Taking α(ψ)=α(λ2), and putting in Eq. (1), we
obtain:

I3 = −α λ2ð Þλ
4π2 ln

λ + λ2

λ − λ2

	 

: ð15Þ

Then, summing up I1, I2 and I3 and using Eqs. (6) and (7), the real
part of the refractive index may be calculated.
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