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Abstract

Excitonic effects are introduced in standard semiconductor device modelling of solar cells. Previous work by the groups of Green and of Zhang

is extended here to also include field dependent exciton dissociation in the space charge layer (SCL) of a n+p diode, and exciton surface

dissociation or charge transfer at the contact or at the junction. A clear result is that it is possible to apply the standard semiconductor device

modelling frame to situations where excitons are dominant. Even when there is only exciton (and no free eh) generation an almost ideal short

circuit current can be collected when there is sufficient exciton dissociation, either at an interface, or in the bulk, or in the SCL. The possible

application of this model to organic solar cells is briefly explored.
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1. Introduction

Excitons are marginally important in classical semiconduc-

tor device physics, and their treatment is not included in

standard solar cell modelling. However, in organic semicon-

ductors and solar cells, the role of excitons is essential, as the

primary effect of light absorption is exciton generation, and

free electrons and holes are created by exciton dissociation.

While there is a vast literature on the exciton related materials

properties in organic solar cells, a quantitative description

which relates excitonic phenomena to the final solar cell output

is lacking. First steps to include excitons in inorganic

semiconductor solar cell modelling were presented by Green

[1–3] and Zhang [4] for silicon solar cells; later, other

inorganic solar cells where studied with the same model, e.g.

CdTe in Ref. [5]. This model was restricted to an analytic

treatment of the quasi-neutral p-region (QNR) of a one sided

n+p junction, and exciton dissociation and recombination was

considered only in the p-bulk, and assumed to be uniform. We

will here extend this model to cover more realistic solar cell

structures: we will include the space charge region (SCL) and

the non-uniform bulk dissociation of the excitons therein

(caused by field enhanced dissociation), and the occurrence of

exciton surface dissociation and recombination at the contacts

and at the junction. As we assume a preset hole concentration

throughout the cell, and a given electric field in the SCL, our

model is still not general, but it covers most real semiconductor

situations. The applicability of this extended model to organic

solar cells will be briefly discussed.

2. Solar cell modelling including excitons

We will denote electrons, holes and excitons with the

subscript e, h and x, respectively. We will limit ourselves to a

one-dimensional analysis.

2.1. Exciton transport and dynamics

The total optical absorption G is due to the generation of

free electron–hole pairs (fraction feh) and of excitons (fraction

fx). Other absorption mechanisms will be neglected, thus

feh + fx =1. In inorganic semiconductors, fx ;0, except at low

temperatures in a narrow wavelength region around the band

gap energy, k|kg =hm /Eg. In organic materials, the dominant

absorption is by excitons, and hence fx ;1 for all absorbed

wavelengths. We take a simple monomolecular form for the

direct recombination (or annihilation) of excitons:

Ux ¼
1

sx
nx � nx0ð Þ ð1Þ
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where sx is the exciton lifetime. Excitons also can dissociate

and convert to a free electron–hole pair, with a net conversion

rate Cx/eh (this corresponds to �Ueh/x in the notation of [1,4])

Cx=eh ¼ b n4nx � nenhð Þ ð2Þ

where b (in cm3 s�1) describes the strength of the exciton

binding and n* is an appropriate constant, with the dimension

of concentration (thus in cm�3). In equilibrium, detailed

balance requires this net rate Cx/eh to be zero; this defines

the equilibrium exciton concentration nx0=ni
2 /n*, occurring

also in Eq. (1). Since excitons do not carry charge, their

transport is by diffusion:

Jx ¼ � Dx

dnx

dx
ð3Þ

2.2. Basic model

In the basic model of Green [1] and Zhang [4], only

minority carriers in the quasi-neutral p-region of a one-sided

n+p junction are considered: the problem is reduced to finding

the electron concentration ne(x) and the exciton concentration

nx(x) in the range 0�x�x0 in the structure of Fig. 1. Since the

QNR is field-free, also the electron current is solely by

diffusion, and the problem is formulated as a set of two

coupled differential equations for the two unknown functions

ne(x) and nx(x):

De

d2ne

dx2
¼ Ueh � Cx=eh � feG ð4Þ

Dx

d2nx

dx2
¼ Ux þ Cx=eh � fxG ð5Þ

where we note that the exciton to eh-pair conversion is a

generation term for the electrons and a recombination term for

the excitons. In Refs. [1,4], a simple low-level injection

approximation is used for the electron recombination Ueh:

Ueh ¼
1

se
ne � ne0ð Þ where ne0 ¼

n2i
NA

ð6Þ

and NA is the uniform acceptor doping in the p-QNR.

Further, it is assumed that the hole concentration (needed in

Eq. (2)) is constant in the p-QNR, nh =NA, and that the

binding parameter b is constant over the field-free QNR.

Under these assumptions, Eqs. (4) and (5) are linear and can

be solved analytically with standard techniques [1]. As an

infinitely wide p-QNR is assumed in Refs. [1,4], both ne(x)

and nx(x) tend to zero when xYV, and no special boundary

conditions are needed at the p-contact. At the SCL-edge

(x =0), the usual Shockley boundary condition for electrons is

used, ne(0)=ne0 exp(qV /kT), where V is the applied voltage.

For the excitons, Green [1] uses nx(0)=nx0 corresponding to

zero exciton recombination at the SCL-edge (Eq. (1)), whilst

Zhang [4] uses nx(0) =ne(0) NA / n*=nx0 exp(qV / kT),

corresponding to zero exciton to eh conversion at x =0 (Eq.

(2)). Both compute the electric current J(V) in the diode by

summing the electron and exciton particle current at the edge

of the SCL:

J Vð Þ ¼ q Je x ¼ 0;Vð Þ þ Jx x ¼ 0;Vð Þ½ � ð7Þ

The appropriateness of these boundary conditions will be

discussed in the next section.

2.3. Extensions to the basic model

Eq. (7) implicitly assumes that the current in the diode is

dominated by the electrons in the p-QNR (which holds for a

one-sided n+p junction), and that all excitons in the SCL

convert to free eh pairs, whose electron contributes to the

current. In order to check out this latter assumption, one has to

extend the Green–Zhang model to include the SCL. To include

drift of electrons in the SCL, Eq. (4) has to be replaced by

De

d2ne

dx2
þ ue

d

dx
neE xð Þð Þ ¼ Ueh � Cx=eh � feG ð8Þ

Also, the recombination Ueh no longer takes the simple

form of Eq. (6), but should be replaced by a Shockley–Read–

Hall expression, e.g.

Ueh ¼
1

se

nenh � n2i
ne þ nh þ 2ni

ð9Þ

where we assumed for simplicity an equal lifetime for electrons

and holes, and one trap level at midgap. Due to this Eq. (9), the

set of differential Eqs. (8) and (5) becomes non-linear. Also, the

electric field E(x) is related to the electric charge by the

Poisson equation. These two complications preclude an

analytic treatment, and the problem has to be solved

numerically. To avoid needless numerical complications, we

confine our attention to electrons and excitons only (assuming

a constant EFp also in the SCL, thus for �W�x�x0), and we

assume a preset field distribution E(x)

E xð Þ¼Em

jxj
W
; SCL:�WV xV 0 andE xð Þ¼ 0;QNR : 0V xV x0

ð10Þ
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Fig. 1. Schematics of a one-sided p+n-junction. The space charge layer (SCL)

extends from x =�W to x =0. The quasi-neutral region (QNR) extends from

x =0 to x =x0.
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