

www.elsevier.com/locate/tsf

Thin Solid Films 516 (2008) 1453 - 1456

Thin films preparation by rf-sputtering of copper/iron ceramic (name of copper/iron ceramic (name of copper/iron ceramic of copper/iron c targets with Cu/Fe=1: From nanocomposites to delafossite compounds

E. Mugnier*, A. Barnabé, L. Presmanes, Ph. Tailhades

Laboratoire CIRIMAT-LCMIE CNRS UMR 5085, Université Paul Sabatier, bât 2R1, 118 route de Narbonne, 31062 Toulouse Cedex, France Available online 24 May 2007

Abstract

In the Cu-Fe-O phase diagram, delafossite CuFeO₂ is obtained for the Cu^I oxidation state and for the Cu/Fe=1 ratio. By decreasing the oxygen content, copper/spinel oxide composite can be obtained because of the reduction and the disproponation of cuprous ions. Many physical properties as for instance, electrical, optical, catalytic properties can then be affected by the control of the oxygen stoichiometry.

In rf-sputtering technique, the bombardment energies on the substrate can be controlled by the deposition conditions leading to different oxygen stoichiometry in the growing layers.

By this technique, thin films have been prepared from two ceramic targets: CuFeO₂ and CuO+CuFe₂O₄. We thus synthesized either Cu⁰/ Cu_xFe_{1-x}O₄ nanocomposites thin films with various Cu⁰ quantities or CuFeO₂-based thin films.

Two-probes conductivity measurements were permitted to comparatively evaluate the Cu⁰ content, while optical microscopy evidenced a selfassembly phenomenon during thermal annealing.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Delafossite; Nanocomposites; Sputtering; Thin films

1. Introduction

Cu-Fe-O system has been extensively studied [1-6]: the corresponding phase diagram at 1000 °C is reported in Fig. 1. This system contains 9 main species: 2 metals (Cu and Fe), 5 simple oxides (Cu₂O, CuO and FeO, Fe₃O₄, Fe₂O₃), and 2 mixed oxides (CuFeO₂, CuFe₂O₄). One can note that a complete solid solution noted $Cu_xFe_{3-x}O_4$ exists in between Fe_3O_4 (x=0) and $CuFe_2O_4$ (x=1). For the Cu/Fe=1 ratio, the 2 main phases stabilized for the intermediate oxygen partial pressure (-7<pO₂ [Pa]<4) at T=1000 °C are the composite Cu⁰/Cu_xFe_{3-x}O₄ and the delafossite CuFeO₂ (Fig. 1). Composites made of metal particles dispersed in an oxide matrix have received great attention due to their specific or improved mechanical, optical, electrical, thermal or magnetic properties [7-14]. In the form of thin films, these materials could be used for different technological applications, for instance in magnetic recording media or in electronic and optical devices. Delafossite compounds are an interesting family of materials by their quite low absorption in the visible spectrum and their p-type

All the films referred in this paper were synthesized either with an ALCATEL A450 apparatus for magnetron sputtered films or with an ALCATEL SCR650 apparatus for non-

semi-conducting properties. For special composition, these two properties make delafossite oxides good candidates for p-type

Transparent Conducting Oxides (TCO) applications such as

transparent pn-junctions, transistors or diodes [15]. Final techno-

logical applications could be flat-panel displays, light-emitting

diodes, etc [16]. To synthesize thin films of these two compounds,

rf-sputtering is a very suitable method, because of its versatility in

Cu_xFe_{3-x}O₄ thin films by rf-sputtering at room temperature on

glass substrates. Moreover, we show that these two phases can be

obtained by a proper adjustment of the deposition parameters,

because the change in deposition conditions leads to similar effects

than temperature and oxygen partial pressure modification.

2. Experimental details

In this work, we report the synthesis of CuFeO₂ and Cu⁰/

terms of apparatus configurations and parameters to vary.

E-mail address: mugnier@chimie.ups-tlse.fr (E. Mugnier).

^{2.1.} Film deposition

^{*} Corresponding author.

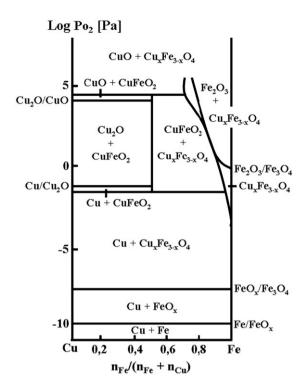


Fig. 1. Phase diagram of the Cu-Fe-O system at 1000 °C from [6].

magnetron sputtered films. The films were prepared from two ceramic targets with a diameter of 10 cm and a Cu/Fe ratio equal to 1. The first target (called A) is a pure CuFeO₂ ceramic with cuprous ions alone. Target B is made of CuO and CuFe₂O₄ phases in which cupric ions are predominant. All the films were deposited on glass substrates placed on a water cooled sample holder. No additional heating was performed during deposition. RF power was fixed at 200 W or 50 W whether magnetron is applied or not and gas (argon) pressure was fixed at 0.5 Pa. No external oxygen was introduced in the sputter chamber. Deposits were carried out with various target-to-substrate distances *D* ranging from 55 mm to 80 mm. The deposition conditions are summarized in Table 1.

2.2. Characterizations

Structural phase analyses such as Grazing Incidence X-Ray Diffraction (GIXRD) (grazing angle $\alpha = 1^{\circ}$) and Electronic Diffraction (ED) were carried out with a Siemens D5000 diffractometer using the copper K α radiation and a JEOL 2010 transmission electron microscope operating at 200 kV, respectively. As most of the as-deposited films were amorphous from

Table 1 Sputtering deposit parameters

Target Magnetron	$A = \text{CuFeO}_2$		$B = \text{CuO} + \text{CuFe}_2\text{O}_4$
	Yes	No	No
Rf-power (W)	50	200	200
Gas pressure (Pa)	0.5		
Target-substrate distance (mm)	70	55-80	55; 70
Substrate	glass		

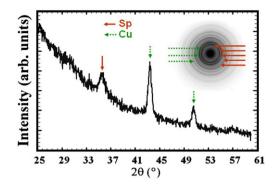


Fig. 2. Typical GIXRD and ED patterns of nanocomposites Cu⁰/Cu_xFe_{3-x}O₄.

GIXRD, post-deposition annealing treatments at 450 °C for 4 h under inert atmosphere were performed to crystallise the film's phases. A 2-probes method was used to acquire $\ln R = f(1/T)$ plots from room temperature to 280 °C with a rate of 150 °C/h. Films cationic compositions were determined by a Cameca SX50 electron microprobe.

3. Results and discussion

We have shown in a previous paper [17] that thin films prepared from a ${\rm CuFeO_2}$ target without magnetron always contain both metallic copper and spinel ferrite phases, whatever the target-to-substrate distance chosen. For instance, typical GIXRD and ED patterns are shown in Fig. 2 for the D=60 mm sample. For all the samples, the Cu/Fe ratio is equal to 1, which means that the films have the same cationic composition than the target. In order to describe the deposition reaction, we can thus provide the following global equation:

$$CuFeO_2 \rightarrow \left(\frac{1}{3-x}\right)Cu_xFe_{3-x}O_4 + \left(\frac{3-2x}{3-x}\right)Cu + \left(\frac{1-x}{3-x}\right)O_2 \qquad 0 \le x \le 1$$
 (1)

During the sputtering process, the bombardment of the growing layer by energetic particles leads to samples with a

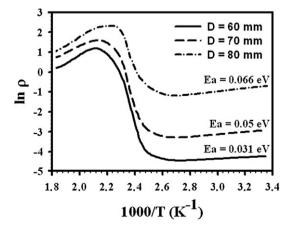


Fig. 3. Electrical resistivity versus temperature for nanocomposites samples prepared at D=60, 70 and 80 mm and their respective activation energies.

Download English Version:

https://daneshyari.com/en/article/1675261

Download Persian Version:

https://daneshyari.com/article/1675261

Daneshyari.com