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a b s t r a c t

X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its
link to an object consisting of several light atoms and using controlled variation of the alignment is
represented. The scheme can reproduce an object in three dimensions with atomic resolution. The
distorting factors of reconstruction are considered.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In spite of significant progress in spatial resolution in electron
and X-ray microscopy for crystals in case of disordered objects the
achievement of atomic resolution still remains a challenging pro-
blem. Partial solution in case of electron microscopy consists in use
of the aberration correction of electron lenses. An adequate lenses
for X-ray beams do not exist. An alternative approach is a lensless
imaging technique based on observation of diffraction and espe-
cially in holography mode. Significant limitation here is the re-
quired beam fluence. For coherent imaging an exposure de-
termines the achievable resolution, and radiation damage sets the
maximum dose. Promising solution of these problems can be in
using novel ultrafast laser technique [1]. The results of the work
[2] show that the degradation of the diffraction pattern from ul-
trafast electronic damage happens at fluences of at least one order
of magnitude larger than provided at currently available free
electrons laser (XFEL) sources. To date the resolution close to
atomic was gained with X-ray beam of XFEL in observation of
diffraction [3].

Diffraction pattern gives directly the autocorrelation function of
an object while an image reconstruction can be complicated [4].
Conventional approaches to solving the phase problem in X-ray
crystallography are Multiple Isomorphous Replacement (MIR),
Single-wavelength anomalous diffraction (SAD) and Multi-wave-
length anomalous dispersion (MAD) [5,6]. More straightforward
reconstruction is admitted by holography scheme, especially in
off-axis mode. An important factor in holography is the properties

of the reference wave. It is well known that if the reference wave is
“well-characterized”, it can be build an efficient procedure of ex-
tracting the object from the diffraction pattern [7–10]. However,
the main practical problem is precisely how to get such a “well-
characterized” reference wave. In this work it is considered the
reference wave arising in X-ray scattering by almost a dot atomic
scatterer. If the reference and the object waves are formed by
scattering of the incident wave of appropriate wavelength, then
the spatial resolution is limited by the size of the reference
scatterer.

Single atom is the natural choice as the reference scatterer for
atomic resolution. This possibility for achieving atomic resolution
in electron microscopy was developed in [11–14], where single
atom or a row of atoms in crystal was called an atomic focuser. The
last one configuration keeps atomic resolution in the plane normal
to the row axis. Its use for in-line electron holography was studied
in [15]. The possibility to use atomic scale objects as lens systems
for corpuscular optics and holography was considered in [16,17]. In
case of X-rays an interesting scheme using single atom as the
detector in backscatter mode was developed in so called X-ray
fluorescence holography [18,19]. The use of nanoparticle as re-
ference scatterer proposed in work [20] to solve the problem of
intensity will lead to the loss of resolution at the level of nano-
particle size.

The holography experiment with atomic scatterer can be rea-
lized by the scheme used in [3]. The practical problem is the
fabrication of a sample with attached atomic scatterer. One pos-
sible way to make link with heavy atom is to attach molecule of
haloalkanes, for example 1-iododecane. Such arrangement has
additional advantage for alignment in external fields in the
scheme with controlled variation of the alignment direction in
space.
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In this paper we consider the feasibility of using an atomic
scatterer as the reference wave source for X-ray holography and in
particular requirements for relative intensities of the scattered
waves. The most simple scheme is off-axis holography with re-
construction of two-dimensional projected scattering potential.
This scheme needs no variation of the alignment angle. However
more interesting is the scheme with reconstruction of scattering
potential in three dimensions. We consider one of the possible
variants of such scheme in next section.

2. Reconstruction of the autocorrelation function of scattering
potential in three dimensions

For X-ray beam the scatterer can be described by means of the
value

ρ( ) = ( )V rr r ,e

where re is classical electron radius and ρ ( )r is electron density
distribution. We refer to this value as scattering “potential” in
analogy with electron optics.

Diffraction patens detected at large distance r0 from the scat-
terer can be written as

Φ σ=H ,2

where σ = A 2 is scattering differential cross section and A is
scattering amplitude which in first Born approximation can be
written as

∫( ) = ( ⋅ ) ( )A i V dq q r r rexp ,

where = − ′q k k , ′k is the wave vector of the incident wave
normal to the detector plane and k is the wave vector of the
scattered wave and for elastic scattering they have equal modulus

= ′k k . The scattering amplitude has the form of Fourier transform
of scattering potential

( ) = ( )( )A F Vq q .

So inverse Fourier transform of scattering cross section is re-
lated with autocorrelation function of scattering potential by
conventional formula

σ( ) = ⊗IF V V .

Note that we ignore the coefficients in Fourier transform since
we need no absolute value of diffraction paten.

The prefactor Φ has the form

Φ ( ) = ( ) ( × ( × ))i k r
r

n n n E
exp

,0

0

where × is cross product, = kn k/ is the unit vector in direction of
the scattered wave vector k and E is the vector of electric field
strength.

Let us consider rotated potential described by rotation operator
with rotation axis containing chosen coordinate center and par-
allel to the detector plane. Rotation operator with rotation angle φ
is denoted as Ω φ( ) and corresponding rotated potential is

Ω φ( ( )⋅ )V r .

Since rotation is orthogonal operator Ω φ Ω φ( ) = ( )− T1 a scat-
tering amplitude for rotated potential can be written as

Ω φ( ( )⋅ )A q .

In the space of wave vectors consider a plane P normal to the
vector of the incident wave ′k . It can be treated as dual to detector
plane. Suppose we have some function κ( )W of arbitrary wave
vector κ ∈ R3, defined piecewise on the set of rotated planes �

φ Ω φκ( ) = { = ( )⋅ ∈ }P Pp p .

Inverse Fourier transform of this function can be expressed in
form

( )
∫

∫ Ω φ Ω φ φ

κ κ κ( )( ) = (− ⋅ ) ( ) =

(− ( ( )⋅ )⋅ ) ( ( )⋅ )
φ π φ

κ
∈ ∈[ )

∂
∂( )

IF W i W d

i W d d

r r

p r p p

exp

exp det
.

Pp p0, ,

Suppose that the function W is truncated on a sphere of radius
K in the space of wave vectors. This gives the convolution of in-
verse Fourier transform with truncation function’s Fourier trans-
form Γ γ( ) = ( )r K Kr3 , γ ( ) = ( ( ) − ( ))πa a a asin cos

a

4
3 . A disk of radius

K on the plane P with <p K corresponds to a sphere of radius K in
the space of wave vectors κ < K and the convolution can be
written as

( )
∫

∫

Γ

Ω φ Ω φ φ

κ κ κ( ( )* )( ) = (− ⋅ ) ( ) =

(− ( ( )⋅ )⋅ ) ( ( )⋅ )

κ

φ π φ
κ

<

< ∈[ )
∂

∂( )

IF W i W d

i W d d

r r

p r p p

exp

exp det
.

K

p K p0, ,

This leads to smoothed inverse Fourier transform with spatial
resolution about Δ π~ K2 / .

With detector aperture half angle αwe have α= ′K k and spatial
resolution can be written in form Δ λ α~ / , where λ = π

′k
2 is wave-

length. For given detector aperture angle a desirable resolution can
be achieved with appropriate wavelength. At small aperture an-
gles α π< < following approximation holds ≅q p and hence
smoothed autocorrelation function of scattering potential can be
reconstructed by the set of holograms of rotated object, assuming

Ω φ Ω φ( ( )⋅ ) ≅ ( ( )⋅ )W Hp q .
Note that for considered aperture angles the prefactor is prac-

tically constant Φ Φ( ) ≈ ( ′)n n , ′ = ′ ′kn k / , so that diffraction paten is
given by the scattering cross section.

Another source of smoothing is the spread of alignment angles
δφ. This factor can be estimated as Δ δφ~ ⋅l , where l is the scatterer
size, and leads to estimation of required alignment strength at
given resolution level δφ Δ~ l/ .

Further we consider the case of sufficiently small spatial re-
solution Δ and neglect smoothing effects.

3. Distortions in reconstruction of the object

In this section we consider the factors affecting reconstruction
of the object from the hologram. We write some conventional
basic formulas related to holography principles in the form con-
venient for our presentation. According to holography principle
scheme let us write total scattering potential as the sum of object
and reference contributions

( ) = ( ) + ( )V O Rr r r .

Autocorrelation function of scattering potential is

⊗ = ⊗ + ⊗ + ⊗ + ⊗ ( )V V O O R O O R R R 1

For further analysis we consider reference scatterer consisting
of heavy atom (reference center) and its link to an object con-
sisting of several light atoms. The arrangement of the object and
the reference scatterer is shown in Fig. 1. For the simpler estimates
we use a zero-radius-potential approximation for atomic poten-
tials, which has proved to be useful in the qualitative consideration
of the problems in atomic physics [21]. Let us write reference
potential as the sum of link potential L and heavy atom potential

δ( ) = ( ) + ( )R L Zr r r , ( )δ( ) = ∑ −L Zr r rj j j

with effective nuclear charges < <Z Zj . Heavy atom center is
chosen as natural coordinate center.
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