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a b s t r a c t

The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for
aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calcu-
lated using the newly derived formula with several residual aberrations. Depending on the symmetry
and origin of an aberration, the calculated transfer function shows characteristic symmetries. The
aberrations that originate from the field’s components, having uniformity along the z direction, namely,
the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that
originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-
rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences
on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and
Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In transmission electron microscopy (TEM), the effect of par-
tially coherent illumination can be expressed as a loss of in-
formation in a reciprocal space. The partial coherence involves a
spatial term and temporal term, which respectively result from the
brightness of the source and energy fluctuation of the imaging
electrons. Here, we note that the current fluctuation of an imaging
device might be converted to that of electron energy. The beha-
viours of the partial coherence were effectively formulated by
Frank [1] and Wade and Frank [2], respectively, for spatial co-
herence and both spatial and temporal coherence of a weak phase
object (e.g., thin amorphous specimen). The effects of both spatial
coherence and temporal coherence are given as the envelope
functions enfolding the contrast transfer function. Thus, regarding
coherence under partially coherent illumination, the imaging of
weak phase objects can be treated using the linear transfer theory.
As for crystal specimens, Ishizuka [3] developed an algorithm for
partially coherent imaging in which the interference between the
diffracted waves is not weak enough to ignore. In the crystal image
simulation of Ishizuka's method, coherences that are calculated for
each pair of the imaging waves are involved in the convolution

formula in the reciprocal plane; therefore, explicit formulation of
attenuation of the Fourier component of the image is not given.

The transmission cross coefficient (TCC) is the basic starting
point for calculating the partial coherence effect. TCC was origin-
ally defined for light optics [4] and has been analogously used in
electron microscopy to develop coherence theories [1–3]. For
electron microscopy, coherence theories including the brightness,
electron energy distribution and resulting TCC have been con-
solidated in detail by Hawkes and Kasper [5]. TCC is the expression
of the degree of coherence of two arbitrary waves in the form of
the double integration of the image intensity over the electron
source intensity and energy distribution. Linear imaging employs
the TCCs between the transmitted wave and all scattered waves,
while general imaging employs the TCCs of the pairs of any waves
inside the imaging aperture. As the integrand in the TCC, the im-
age component formed by two waves emitted from a certain point
of an electron source is calculated using the phase disturbance
introduced at each reciprocal point, which is defined by the wave
aberration function. For a microscope without an aberration cor-
rector, the wave aberration function for the partial coherence is
presumed to include only the third-order spherical aberration (Cs)
and defocus (df). Since the contrast transfer function of an electron
microscope was given by Scherzer [6], Cs had been the main
aberration that restricts the resolution of an electron microscope,
until the aberration correction was established. Particularly, not
much attention has been paid to the odd-symmetric wave aber-
rations because of their invisibility in the power spectrum,
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although they cause phase modulation that deforms the images of
objects. The importance of odd-symmetric aberrations was ex-
amined by Zemlin [7], who introduced the measurement method
of aberrations up to the second order, including coma and three-
fold astigmatism. This method has been used for the measurement
of residual aberrations since the birth of the aberration-corrected
TEM [8].

Today, the aberration correction technique has been well es-
tablished [9] and the residual aberrations are of wide variety [10],
having magnitudes comparable to the corrected Cs values, which
are approximately several micron metres or less. Therefore, for the
calculation of spatial coherence in TCC, all of the influential aber-
rations should be taken into account. In this study, we incorporate
all of the possible aberrations in the calculation of the spatial co-
herence term in TCC and derive the general formula to calculate
the linear transfer function for weak phase objects. We also show
examples of the transfer functions in some typical conditions. The
temporal coherence effect on the aberration-corrected microscope
will not be discussed detailed in this paper, assuming the validity
of the conventional treatment [1–3], in which the attenuation
function due to the defocus spread is multiplied. The temporal
coherence should be carefully reconsidered in future works, taking
into account the strongly excited correction devices in aberration-
corrected microscopes.

2. Transmission cross coefficient (TCC) for general imaging

In this study, we focus our interest on the spatial coherence in
TCC; for convenience, we will omit the temporal coherence term,
which is the exponential decay function. In Section 5 (TEM image
simulation), the conventional temporal coherence function will be
used in the calculations. In Sections 2, 3 and 4, the source is
treated as if it is quasi-monochromatic. For a quasi-monochro-
matic energy source, the decay function due to the temporal co-
herence can be regarded as a constant with one value, the image
spectrum I( k ) is given as follows;

∫ ( ) ( ) ( )( ) = + ′ ′ + ′ * ′ ′ ( )k k k k k k k kI TCC , F F d 1

∫( ) ( ) ( )″ ′ = ( ) + ″ * + ′ ( )k k q k q k qqTCC , s t t d 2

The function s(q) is the normalised intensity distribution of the
effective source, which is considered as an assembly of incoherent
point sources. F(k) is the Fourier transform of the exit wave from
the object, while t(k) is the pupil function, expressed as

π χ( ) = ( ) ( ( ) λ) ( )k k i kt a exp 2 / 3
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( ) = ∉

∉ ( )

k k

k

a 1, if objective lens aperture

0, if objective lens aperture 4

The wave aberration χ(k), which is a real value function and
considered in units of length, represents the distance from the
Gaussian sphere to the wave front. The χ(k) for microscopes
without Cs correctors is dominantly determined by Cs and df.
However, for the Cs-corrected microscopes, wave aberration χ(k)
should include the aberration coefficients up to six-fold astigma-
tism to reproduce the experimental high resolution images.
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Here, we use Sawada's notation of the aberration coefficients
[11] in Eq. (5), which is listed in the Appendix. ω is the complex
angle, which is related to the spatial frequency vector k by

ω λ= ( )k 6

( )θ= = + ( )k r i k ikexp 7k k x y

where λ is the wavelength of the electron. The polar coordinate
expression of k and ω is convenient when tilt-induced wave
aberration caused by misalignment needs to be evaluated [12],
while Cartesian coordinates are suitable when intrinsic geome-
trical aberrations need to be expressed as derivatives of the wave
aberrations.

The partial coherence integration in Eq. (2) can be solved
analytically under the following conditions:

(a) the incoherent source has a Gaussian distribution of size q0:

( ) ( )( ) ( )π( ) = – ( )q q q qs 1/ exp / 80
2 2

0
2

(b) the wave aberration can be approximated by using the first-
order term of a Taylor series:

( )
χ χ χ

χ χ χ
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(c) the aperture term a(kþq) can be removed from the TCC
expression because the source size |q| in electron microscopy is
negligibly small compared to the OL aperture and imaging fre-
quency |k|.

Then, TCC becomes [1,3]
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where γ(k) is the phase shift caused by the wave aberration, i.e.,

γ π λ χ( ) = ( ) ( ) ( )k k2 / 11

Eq. (10a and b) were originally derived from the wave aberra-
tion with only Cs and df [1]. Even with the more general χ(k) given
by Eq. (5), the same procedure can be applied to obtain the same
result as shown above.

Eq. (10b) can be modified by replacing the derivative of the
wave aberration with the geometrical aberration G(k), which is
given by

χ λ( ) = ∇ ( ) ( )k kG / 12
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The integral of Eq. (10a) coincides with the Fourier transform of
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