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a b s t r a c t

Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures
the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate
the electron wavefront phase. The error in measurement of the phase therefore determines the smallest
observable changes in electric and magnetic properties. Here we explore the summation of a hologram
series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation
of hologram series requires independent registration and correction of image drift and phase wavefront
drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the
TEM for the double biprism configuration is examined. An analytical model of image and phase drift,
composed of a combination of linear drift and Brownian random-walk, is derived and experimentally
verified. The accuracy of image registration via cross-correlation and phase registration is characterized
by simulated hologram series. The model of series summation errors allows the optimization of phase
error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An
experimental example of hologram series summation is provided on WS2 fullerenes. A metric is
provided to measure the object phase error from experimental results and compared to analytical
predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a
spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in
vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs
with the experimental metrics by þ7% inside the object and �5% in the vacuum, indicating that the
model can provide reliable quantitative predictions.

Crown Copyright & 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Off-axis electron holography (EH) in the transmission electron
microscope (TEM) is a technique for the characterization of
electrostatic and magnetic properties of a specimen [1,2]. A
population of electrons, each being a wave-particle, has a distribu-
tion of amplitude and phase shift in both time and space. The
electron is phase shifted by the electric and magnetic potentials
integrated along its path [3], most principally that of the object/
specimen, analogous to the index of refraction of a material phase
shifting a photon.

An attractive strategy for improving the signal-to-noise ratio
(SNR) of electron holograms is summation of a hologram series.
Two approaches have been historically used, one based on the
phase-shifting algorithm [4–8] and the other on alignment of
conventionally reconstruction hologram series [8,9]. This paper

takes the second approach, first demonstrated by Voelkl and Tang,
whereby the image drift and phase wavefront drift are separately
registered and corrected. Where the previous work demonstrated
proof of principle on amorphous carbon, we have attempted to
provide a rigorous model of the system, demonstrated it on a more
typical specimen at high resolution, and demonstrated quantita-
tive agreement between the model and experiment.

An image series can be used to break a long exposure into
frames with the image drift for each frame corrected by cross
correlation. In an electron hologram the strongest feature is the
fringes of the interference pattern, which shift with drift of the
electron phase. As a result, application of cross-correlation align-
ment cannot be applied to electron holograms directly to correct
the image drift. Registration of the image and phase drift must be
performed separately, which requires operating on the complex
data of the reconstructed hologram. In this paper we provide
methods to optimize the phase error of hologram series as a
function of the targeted spatial resolution.

In Section 2, we introduce the dependence of phase error on
spatial resolution and how to optimize the microscope column. In
Section 3 we extend the optimization for a hologram series, taking
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into account image and wavefront phase drift. In Section 4 we
provide examples of high-resolution hologram series results on a
specimen of inorganic fullerene WS2. In Section 4.2 we develop a
metric to measure phase error experimentally and compare it to
the estimates derived in Section 3. A description of the algorithm
used to align and sum a hologram series is found in the online
supplemental material.

2. Optimization of electro-optical configuration

In off-axis electron holography, the electron wavefront is split
by an electrostatic biprism. The object wave (subscript 1) passes
through the specimen, while the reference wave (subscript 2)
passes through vacuum adjacent to the specimen. The two waves
converge on a detector at semi-angle θ, forming an interference
fringe pattern, or hologram. The interference pattern intensity,
ψ2
12ðrÞ, as a function of position r¼ rxx̂þryŷ, is given by,

ψ2
12ðrÞ ¼ A2

1ðrÞþA2
2ðrÞþ2Vðr; qc; αoÞA1ðrÞA2ðrÞ cos ð2πqcrþϕ1ðrÞ�ϕ2ðrÞÞ

ð1Þ
where A1 and A2 are the object and reference wave amplitude,
respectively, ϕ1 and ϕ2 are the object and reference wave phase
shift, respectively, jqcj ¼ 2 sin ðθÞ=λ, is the carrier frequency of the
fringe pattern, V is the holographic visibility (or fringe contrast)
which depends on the illumination angle αo and the separation of
virtual sources determined by qc .

The path length, i.e. phase, difference between the reference
and object waves measures both the electrostatic potential back-
ground of the object, and the electrostatic and magnetic poten-
tials/fields [10–12]. As with all measurements, there is an
associated error that limits the minimum variation in specimen
thickness, compositional variation, and electric and magnetic field
that may be measured [13]. The standard error of the phase has
historically been expressed by the estimate of its variance [14–17],

s2
ϕðμ;V Þp2=μV2 ð2Þ

where, μ is the number of electrons per reconstructed pixel and V
is the holographic visibility, which may be calculated by various
means [18]. Typically in the digital reconstruction process the
filtering that isolates the sideband changes the signal-to-noise
characteristics of the hologram considerably, as discussed below,
so that Eq. (2) is a proportion. It may be used as a figure of merit to
compare vacuum holograms under different illumination condi-
tions, for example.

Minimization of phase error requires maximization of both
current density and holographic visibility. Holographic visibility is
largely dependent on the high wavefront coherence which results
from parallel, widely-spread illumination. However, the more
widely spread the illumination, the lower the current density
incident on the specimen. Long exposure times may be used to
increase the electron dose, but image drift, shifts in specimen
position, and phase drift, changes in the electron path-length, blur
the hologram in space and phase. Thus it is necessary to optimize
the electro-optical configuration [19].

The estimator of Eq. (2) is limited in that it does not relate the
spatial resolution to the phase error, although the two are linked
[20]. For example, an estimated phase error of 0.001 rad (2π/6300)
with a measured phase noise of 0.02 rad (2π/300) has been
demonstrated at 12 nm spatial resolution [21], compared to an
estimated phase error of �0.06 (2π/100) at 0.1 nm spatial resolu-
tion [22]. Phase error is related to spatial resolution, both due to
the optical-transfer function (OTF) of the TEM [23] and
modulation-transfer function (MTF) of the detector [24,25]. The
down-sampling of the detector from the holographic reconstruc-
tion process also has a major impact on the mean dose per pixel.

As we show in Section 3, the drift of the image and holographic
fringes also affects the phase error, especially for prolonged
exposures at high spatial resolutions.

Reconstruction of electron holograms is typically done using
the Fourier method [2,20]. In Fourier-space, a hologram consists of
a central band at zero frequency (i.e. the autocorrelation) and two
sidebands, one at the spatial frequency of the fringe pattern and
the other at its complex conjugate. The phase shift is encoded in
the positions of the fringe pattern, therefore reconstruction of the
complex (amplitude and phase) electron wave-function is
achieved by isolating the sideband with a filter function, such as
a von Hann window, translation to zero-frequency, and then an
inverse Fourier transform is applied. The Hann window has
historically often been referred to as the ‘Hanning’ window, in
confusion with the similar but different Hamming window.

To introduce the spatial frequency dependence, the electron
counts is defined as [20],

μ¼ txIeR� DQEccdðqÞ ð3Þ
where q¼ qxx̂þqyŷ, is the spatial frequency coordinate, tx is
exposure time, Ie is the electron flux at the object plane, and R is
the rescale factor of the Fourier filter window. The effective dose is
reduced by the detector quantum efficiency (DQE) [26]. We use a
simplified version of the DQEccdðqÞ ¼MTF2ccdðqÞ=NTF2ccdðqÞ, where
MTFccd is the holographic MTF and NTFccd is the noise-transfer
function [24]. This is not a complete treatment of the DQE as it
does not account for the variation in DQE with dose, but it does
effectively estimate the increase in shot noise over the expected
Poisson value.

The factor R appears due to the downsampling that occurs in
Fourier-space by the filter window in the reconstruction process
[27,28]. For a circular hard-style window (which is zero outside
the radius a), such as the von Hann window used throughout this
paper, we find that

R¼ ð2
ffiffiffi
2

p
=aÞ2

where a is the radius of the von Hann window (in reciprocal space
units). The additional factor of

ffiffiffi
2

p
is the Ishizuka resampling

factor, due to the shape mis-match between the square detector
and rotationally-symmetric filter window [27,28].

In general, the filter radius a is chosen to be some fraction of
the carrier frequency qc ¼ xa. The value of x chosen depends on the
assumptions made regarding the nature of the specimen. As x
increases, the low-pass filter becomes tighter and as a result
spatial resolution is lost but nominally more shot noise is removed
from the reconstruction. In practice the amount of shot noise
removed depends on the power spectral density of the hologram
relative to the distribution of the shot noise.

For strongly scattering objects historically x¼3 has been
popular due to the assumption that the centerband has twice
the bandwidth of the sideband for a strongly-scattering specimen
[29]. The historical justification for choice of bandwidth was due to
uncertainty associated with the optical reconstruction process and
non-linearity of the film emulsions used to record the hologram. In
contrast Izhisuka showed that for a weak-phase object the filter
radius can essentially be a¼ qc [27].

In practice for digital holographic reconstruction the experi-
mental roll-off can be computed from the rotational average of the
sideband and centerband magnitude. The average bandwidth for
the 150-hologram series discussed in Section 4 is shown in Fig. 1.
In signal-processing the roll-off radius rro for a filter can be
expressed as the �10 dB level (where the signal amplitude is
31.6% of the maximum value). The roll-off radius, computed by
bilinear interpolation, of the centerband is 0.033 nm�1 and the
sideband is 0.084 nm�1, as compared to the carrier frequency of
6.34 nm�1. For the reference hologram, the roll-off radius of the
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