
On the computation of the magnetic phase shift for magnetic nano-particles
of arbitrary shape using a spherical projection model

E. Humphrey, M. De Graef n

Carnegie Mellon University, Pittsburgh, PA 15213, USA

a r t i c l e i n f o

Article history:
Received 9 January 2013
Received in revised form
10 March 2013
Accepted 10 March 2013
Available online 15 March 2013

Keywords:
Lorentz microscopy
Electron phase shift
Electron tomography

a b s t r a c t

The magnetic phase shift of an electron wave traveling through a magnetized object is computed by
considering the object to be made up of a collection of uniformly magnetized spheres arranged on the
nodes of a cubic grid. In the limit of vanishing grid size, this approach becomes equivalent to other
numerical approaches. Update equations are derived for the change of the magnetic phase shift when the
magnetization of a single object voxel is modified. Example phase shift calculations are presented for a
uniformly magnetized sphere, circular disks with an infinitely sharp vortex core and a smooth core, and
an oval disk with a pair of vortices and an antivortex.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lorentz transmission electron microscopy (LTEM) relies on the fact
that the phase of a high energy electron wave will be modified by any
magnetic object in or near its path. The Aharonov–Bohm phase shift
[1] consists of two contributions, one from the electrostatic lattice
potential VðrÞ, and one from the magnetic vector potential, AðrÞ
φtðr⊥Þ ¼ φeðr⊥Þþφmðr⊥Þ

¼ π

λE

Z þ∞

−∞
Vðr⊥þℓωÞ dℓ− e

ℏ

Z þ∞

−∞
Aðr⊥þℓωÞ �ω dℓ, ð1Þ

where E is the relativistic electron accelerating voltage, λ is the electron
wave length, and ω is a unit vector along the electron trajectory; ℓ
parameterizes the electron position along this path. In this contribu-
tion, wewill be concerned primarily with themagnetic component φm

of the total phase shift φt .
Over the past two decades, several phase shift computation

approaches have been published. For thin-film objects with a non-
uniform but periodic magnetization state, Mansuripur [2] suggested
an approach based on an explicit computation of the magnetic phase
shift using the Fourier transform of the magnetization, MðkÞ. His
approach accounts for the projection effects due to an inclined
incident electron beam, but assumes a uniform magnetization profile
along the direction normal to the film; as a result of this approxima-
tion, the phase shift can be expressed as a 2D inverse Fourier series
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where the prime indicates that the term ðm,nÞ ¼ ð0,0Þ does not
contribute to the summation, q¼ ðm=PÞen

xþðn=Q Þen
y is the frequency

vector, en
x and en

y are reciprocal unit vectors, p is the beam direction
expressed in the orthonormal reference frame, t is the sample
thickness, a hat indicates a unit vector, and the function GpðtjqjÞ is
given by
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where sincðxÞ≡sinðxÞ=x; for normal beam incidence, we have Gp ¼ 1.
This formalism was extended to more complex magnetization config-
urations (as generated, for instance, by micromagnetic simulations) by
Haug et al. [3] and applied to the simulation of interference fringes in
coherent Fresnel domain wall images. The influence of sample tilt on
the magnetic phase shift was also investigated in this study and is
particularly relevant to the algorithm presented in the present paper.

Beleggia and Zhu [4] proposed an expression for the 2D Fourier
transform of the magnetic phase shift for the case of uniformly
magnetized particles of arbitrary shape. The magnetization state is
expressed as MðrÞ ¼M0m̂DðrÞ, where DðrÞ is the shape function
(equal to 1 inside and 0 outside the particle) and M0 is the
saturation magnetization. Their expression is given by

φmðkÞ ¼
iπB0

ϕ0

Dðkx,ky,0Þ
k2⊥

ðm̂ � kÞjz, ð4Þ

where ϕ0 ¼ h=2e¼ 2070 T nm2 is the flux quantum, B0 ¼ μ0M0 is
the saturation induction, and the shape amplitude DðkÞ (the
Fourier transform of DðrÞ) is evaluated in the plane ðkx,kyÞ normal
to the beam direction. Explicit expressions for the magnetic phase
shift for uniformly magnetized spheres, cylinders, rectangular
prisms, and arrays of such nano-particles can be found in [4]; this
approach was generalized to arbitrary polyhedral shapes as well as
combinations of multiple polyhedral shapes in [5].
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Recently, we reported on the successful determination of the
3D magnetic vector potential for thin rectangular and elliptical
plates [6]; a tomographic approach using four tilt series (two sets
with orthogonal tilt axes, and, for each tilt axis, two series with the
sample in the usual orientation and flipped upside down) was
used in conjunction with a vectorial filtered back-projection
algorithm [7,8] to reconstruct the vector potential on a voxel grid
with cube edge length of 6.52 nm. While the reconstruction
provided a reasonable representation of the spatial variations of
the vector potential, the usual tomographic artifacts were also
apparent in the reconstruction: a blurring that is typical of the
filtered back projection approach, as well as streaking due to the
missing wedge in the tilt series.

In x-ray computed tomography experiments, the filtered back-
projection result is typically only used as a starting point for
subsequent iterative refinements of the reconstructed object. Such
refinement algorithms come in many flavors and acronyms, among
others: algebraic reconstruction technique (ART) [9]; simultaneous
algebraic reconstruction technique (SART) [10]; discrete algebraic
reconstruction technique (DART) [11]; dual axis tomography [12],
etc. In addition, recent work in the signal processing community has
resulted in model-based iterative reconstruction (MBIR) approaches
that require not only a back-projection algorithm but also a forward
projection algorithm and an efficient numerical method to update the
simulated projections when the state of a single object voxel is
changed. Such an approach makes use of prior knowledge about the
object, it can handle noisy data sets, and allows for the refinement of
large numbers of parameters, such as affine transformations to align
individual images, gain normalization factors, and so on. A recent
example of the application of MBIR principles in the area of high angle
annular dark field (HAADF) STEM tomography can be found in [13].

Application of MBIR concepts to vector field electron tomogra-
phy (VFET) implies the need for an efficient algorithm to compute
the magnetic phase shift starting from the object's magnetization
state. In addition, the algorithm must be capable of efficiently
updating the total phase shift whenever the magnetization of a
single object voxel is modified. An additional desirable aspect of
MBIR-type methods is that they allow for a multi-grid approach to
the iterative reconstruction of the object; in other words, the
reconstruction can first be carried out on a coarse object grid, and
is subsequently refined as the algorithm converges. Executing the
simulation at a coarser resolution level first will typically improve
the convergence speed with respect to a reconstruction that uses
the finest resolution from the start.

In the remainder of this contribution, we describe a new
algorithm that is capable of updating the magnetic phase shift
when the magnetization of a single object voxel is changed.
The algorithm is also compatible with a multi-grid approach,
and the object's voxel resolution can be changed easily throughout
the computation. Section 2 describes the forward projection
algorithm, and in Section 3 we show that the algorithm provides
an accurate multi-grid alternative to the approaches described
before. We conclude this paper with a description of the use of the
new algorithm for iterative reconstruction of the magnetic vector
potential of a magnetized object of arbitrary shape.

2. Theoretical model

2.1. Object sampling grid

A magnetized object of arbitrary shape is described by a
magnetization vector field MðrÞ and a shape or characteristic
function DðrÞ; by definition, MðrÞ ¼ 0 wherever DðrÞ ¼ 0, i.e., out-
side the object. To discretize the object, we introduce a 3D grid of
cubic voxels, with the origin placed at the object's center-of-mass.

The cubic voxels have edge length 2a, so that the 3D cubic lattice
has nodes at the locations rijk ¼ 2aði,j,kÞ where ði,j,kÞ is a triplet of
integers taking on all the values for which DðrijkÞ ¼ 1. Since we will
be interested in computing the electron wave phase shift as a
function of object tilt angle, we define the cartesian reference
frame of the object (at zero tilt) to be such that the cubic grid has
its ex and ey directions parallel to the plane of the detector, and the
ez direction pointing towards the electron gun (opposite the beam
direction). Changing the resolution of the cubic grid is accom-
plished simply by changing the value of the grid lattice parameter
2a.

To compute the magnetic phase shift as a function of object
orientation we will need to define the average magnetization state
for each cubic lattice cell, and apply Eq. (4) to determine the
corresponding phase shift due to that cell. While such an approach
is feasible (and, in fact, has been reported for rectangular prisms in
[4]), a computational issue arises in which the projection of a cube
is different along different projection directions ω̂. Since the shape
amplitude of a cube is given by

DcubeðkÞ ¼ 8a3 sincðkxaÞ sincðkyaÞ sincðkzaÞ, ð5Þ

this function would need to be recomputed for each tilted object
orientation, since the rotation mixes the components of the
ðkx,ky,kzÞ coordinate arrays.

A computationally more efficient approach is to replace the
voxel cubes by equal-volume spheres of radius R

V ¼ 8a3 ¼ 4πR3

3
-R¼ a

6
π

� �1=3

¼ 1:2407a: ð6Þ

The projection of a sphere does not depend on the sphere's
orientation, so the associated arrays (derived explicitly in the next
section) need to be computed only once for each grid resolution 2a
and can be re-used for all projection directions.

The equal volume spheres in neighboring voxels have a small
overlap due to the fact that the radius is slightly larger than a but
in the limit of decreasing grid lattice parameter this does not pose
a problem. Each sphere has associated with it a magnetization
vector MðrijkÞ. Since magnetization is defined as the total moment
per unit volume, in the limit of vanishing a one recovers the
atomic moments that make up the entire object. Therefore, the
magnetic phase shift of the object is approximated by the super-
position of magnetic phase shifts due to uniformly magnetized
equal-volume spheres that are substituted on the voxel lattice, as
shown schematically in Fig. 1. Changing the grid resolution 2a is
then simply accomplished by changing the number of spheres
along each coordinate direction, as shown schematically in the
three consecutive multi-grid generations of Fig. 1.

2.2. Sphere lattice phase shift

According to Eq. (4), the magnetic phase shift due to a single
uniformly magnetized sphere of radius R requires knowledge of
the shape amplitude for the sphere, which is easily shown to be

DsphereðkÞ ¼ 3V
j1ðkRÞ
kR

, ð7Þ

where j1ðxÞ ¼ sin x=x2−cos x=x is the spherical Bessel function of
the first order and V is the volume. Substitution in Eq. (4) results in

φmðkx,kyÞ ¼
3πiB0V
Rϕ0

j1ðk⊥RÞ
k3⊥

ðμ̂ � kÞjz, ð8Þ

where ðkx,kyÞ are frequency components in the plane normal to the
projection direction ω̂. Introducing direction cosines ðμx,μy,μzÞ for
the magnetization unit vector μ̂ (expressed in the beam reference
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