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a b s t r a c t

We introduce a new approach for the separation of the electrostatic and magnetic components of the
electron wave phase shift, based on the transport-of-intensity equation (TIE) formalism. We derive two
separate TIE-like equations, one for each of the phase shift components. We use experimental results on
FeCoB and Permalloy patterned islands to illustrate how the magnetic and electrostatic longitudinal
derivatives can be computed. The main advantage of this new approach is the fact that the differences in
the power spectra of the two phase components (electrostatic phase shifts often have significant power
in the higher frequencies) can be accommodated by the selection of two different Tikhonov regulariza-
tion parameters for the two phase reconstructions. The extra computational demands of the method are
more than compensated by the improved phase reconstruction results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The ability to image the magnetic domain structure in magnetic
materials is critical to understanding the way in which these
materials respond to an external field and how this behavior is
related to the microstructure of the material. Applications of
magnetic materials are wide-ranging and include for example
magnetic recording media in which the magnetic domains control
bit size, and permanent magnets. There are a number of techni-
ques that can be used to image the magnetic domain structure [1]
of which the highest spatial resolution is obtainable using Lorentz
transmission electron microscopy (LTEM) [2]. This technique has
the additional advantage that the microstructure and composition
of the materials can be explored in the same instrument for direct
correlation with the domain structure. Recent examples of the use
of Lorentz microscopy are the study of nanoscale magnetic inter-
actions in square artificial spin ice lattices, in particular the
structure of Dirac strings and “magnetic monopoles” [3,4], in situ
studies of the motion of domain walls in Ni2MnGa type ferromag-
netic shape memory alloys [5] and the interaction of magnetic
domain walls with twin boundaries in FePdCo alloys [6].

In LTEM one measures the phase shift of the incident electron
beam due to the sample's magnetic induction, which leads to a
deflection of the electron beam. This is achieved by defocusing the
imaging lens by a large amount [7], a technique known as Fresnel
imaging. Typical deflection angles are in the range of tens to

hundreds of microradians, i.e., about two orders of magnitude
smaller than typical Bragg angles, so that defocus values of several
to hundreds of micrometers are not unusual. The large defocus
generates significant defocus blurring, so that the spatial resolu-
tion of Lorentz images is usually estimated to be around 10 nm.
Along with the defocus blurring, in field emission instruments the
Fresnel images also suffer from significant delocalization due to
the large spherical aberration of the long focal length Lorentz lens
used for this type of observation; Cs values of several meters are
not unusual [8].

The combination of a Lorentz pole piece in which the sample
can be imaged whilst sitting in a low magnetic field, unlike in
conventional TEM objective lenses, with an imaging spherical-
aberration corrector provides improved spatial resolution in
Lorentz mode, because the correction of Cs down to a few microns
lowers the amount of delocalization, and, hence, the amount of
defocus needed to render the magnetic domain walls visible. The
reduced defocus, in turn, leads to reduced defocus blurring and
therefore an improved spatial resolution of the order of 1 nm
[9–11]. In addition, the reduced defocus brings the Fresnel image
mode into the realm of applicability (the so-called small defocus
limit [12]) of the transport-of-intensity equation (TIE) formalism
for electron wave phase reconstruction [13,14].

The TIE formalism can be used to reconstruct the phase of the
electron wave at the detector plane from a through-focus series
centered at zero defocus. Due to the small angles involved in
Lorentz deflection, one can show that the application of TIE to
Lorentz images enables the phase shift of the sample exit wave
function to be obtained, provided the small defocus limit is
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observed. The total phase shift consists of two contributions: an
electrostatic phase shift due to the mean inner potential and,
potentially, any localized electrostatic polarization, and a magnetic
phase shift due to the magnetic induction of the sample. In most
cases, the magnetic phase shift is rather weak compared to the
electrostatic component, so that it can become difficult to extract
the magnetic information. It is then common to record a second
through-focus series with the sample flipped upside down, since
the lack of time-reversal symmetry of the magnetic phase shift
will change its sign relative to the electrostatic phase shift.
A simple subtraction then produces the magnetic phase shift.

In this contribution, we present an alternative approach to the
separation of electrostatic and magnetic phase shifts using the TIE
formalism. In Section 2 we describe the transport-of-intensity
equation and how it is usually solved using fast Fourier Transforms
(FFTs). Then we introduce a new approach for phase shift separa-
tion, based on the linearity of the TIE formalism, and illustrate its
benefits using a computational model. Finally, in Section 3 we
present a series of experimental phase reconstructions on a
patterned Permalloy sample and on amorphous rectangular CoFeB
islands. We conclude with a brief summary of results.

2. Theory

2.1. The transport-of-intensity equation

Under paraxial conditions, the phase of an electron wave is
coupled to the intensity gradient along the electron trajectory.
Paganin and Nugent [13] derived the so-called transport-of-inten-
sity equation (TIE) formalism, which expresses this relation
mathematically. If the total phase shift of the electron wave is
represented by the symbol φt ¼ φeþφm, with φe the electrostatic
and φm the magnetic phase shifts, then the TIE reads

∇ � ðI0∇φtÞ ¼ �k∂zI; ð1Þ

where I0 is the intensity of the in-focus image, k¼ 2π=λ is the wave
number, and the z-direction is parallel to the electron propagation
direction. The ∇ differential operators are two-dimensional and
operate in the plane normal to the z-axis, and the symbol ∂z
represents the partial derivative with respect to the variable z.
It should be noted that the gradient of the magnetic component of
the total phase shift can be related to the integrated magnetic
induction by the relation [15]

∇φm ¼ � π

ϕ0
ðB� n̂Þt; ð2Þ

where t is the foil thickness, n̂ a unit vector along the beam
direction, and ϕ0 the flux quantum. Note that this relation is only
meaningful for samples with uniform thickness and vanishing
fringing fields.

The TIE formalism can be derived in a number of different
ways, notably from a paraxial approximation to the free-space
Schrödinger equation [16], or from the real-space propagator
equation [17]. For Lorentz microscopy conditions, with small
scattering angles, the TIE follows directly from a small-angle
approximation to the Lorentz lens point-spread function [18].
An elegant numerical solution approach to the TIE formalism
was proposed by Paganin and Nugent [13]; their approach uses
Fourier transforms to implement the inverse differential operators
∇�1 and ∇�2. The total phase shift can be written formally by the
following expressions:

ϕt ¼ �k∇�2 ∇ � 1
I0
∇ð∇�2½∂zI0�Þ

� �� �
; ð3Þ

ϕt ¼ �k∇�1 � 1
I0
ð∇�1½∂zI0�Þ

� �
: ð4Þ

Comparing this relation with Eq. (2) indicates that the integrated
magnetic induction components can be obtained by partially
solving the TIE formalism using a single application of the inverse
gradient operator ∇�1 [19, p. 655], provided that there are no
spatial variations in the electrostatic phase shift. However, this is
unlikely to be the case for realistic LTEM samples as there will be
electrostatic potential variations due to either sample thickness
variations or to the lack of materials in between patterned
nanostructures. For a derivation of the conditions under which
the TIE formalism is applicable to Lorentz images we refer to
Ref. [12]. A description of the boundary conditions used to solve
the equation can be found in [20].

2.2. Separation of electrostatic and magnetic phase shifts

In this section, we describe a new approach to the separation of
electrostatic and magnetic phase components. In the conventional
approach, which we will summarize first, one reconstructs the
total phase shift, φþ

t ¼ φeþφm, using a through-focus series, Iþ� , I
þ
0 ,

and Iþþ , for the sample in the upright orientation, indicated by the
superscript þ; the defocus amount is indicated by the subscript.
The TIE in this case is given by

∇ � ðIþ0 ∇φþ
t Þ ¼ �k∂zIþ � � k

2 Δf
ðIþþ � Iþ� Þ: ð5Þ

The second equality is valid in the small defocus limit and approxi-
mates the longitudinal derivative as the difference between over-
focus and underfocus images.

When the sample is flipped upside down, a second through-
focus series I�� , I

�
0 , and I�þ is used to solve a second TIE for the total

phase φ�
t ¼ φe�φm (the sign change reflects the fact that the

magnetic phase shift is not invariant with respect to time reversal
symmetry):

∇ � ðI�0 ∇φ�
t Þ ¼ �k∂zI� � � k

2Δf
ðI�þ � I�� Þ: ð6Þ

The electrostatic and magnetic phase shifts are then obtained by
adding and subtracting the two reconstructed phases:

φe ¼
1
2
½φþ

t þφ�
t �; ð7Þ

φm ¼ 1
2
½φþ

t �φ�
t �: ð8Þ

This traditional approach can be used with the TIE formalism as
well as with standard off-axis holography phase reconstructions.

The linearity of the transport-of-intensity equation suggests
that separation of the phase shifts may be accomplished also by
substituting the expressions for φþ

t and φ�
t into the respective

TIEs (5) and (6):

∇ � ðI0∇φeÞþ∇ � ðI0∇φmÞ ¼ �k∂zIþ ;
∇ � ðI0∇φeÞ�∇ � ðI0∇φmÞ ¼ �k∂zI� ;

where we have made use of the fact that Iþ0 ¼ I�0 � I0. Adding and
subtracting these equations we obtain

∇ � ðI0∇φeÞ ¼ �k∂ez I ½TIE�e� ð9Þ

∇ � ðI0∇φmÞ ¼ �k∂mz I ½TIE�m� ð10Þ
where we define

∂ez I�
1
2
½∂zIþ þ∂zI� �; ð11Þ

∂mz I�
1
2
½∂zIþ �∂zI� �; ð12Þ
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