
Aberrations in asymmetrical electron lenses$

J.P.S. Fitzgerald n, R.C. Word, R. Könenkamp

Department of Physics, Portland State University, 1719 SW 10th Avenue, Portland, OR 97201, United States

a r t i c l e i n f o

Available online 25 November 2011

Keywords:

Electron optics

Geometric optics

Electrostatic lens

Einzel lens

Asymmetric lens

Spherical aberration

Chromatic aberration

a b s t r a c t

Starting from well established knowledge in light-optics we explore the question if electron-optical

aberration can be improved in asymmetrical electron lenses. We show that spherical as well as

chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center

electrode is moved away from the center position towards the entrance electrode. Relative improve-

ments up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We

use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed

length and working distance. The agreement of the two calculation methods is very good. We then

derive an estimate for the electron-optical aberration coefficients from light-optics. The derived

expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from

electron-optics as they involve integrals only over the electrostatic potential, not over the electron

paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are

tempted to suggest that the enormous knowledge base of light optics can provide considerable

guidance for electron-optical applications.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over the last centuries many qualitative and quantitative
methods have been established in the field of light optics with
the goal to optimize the fabrication of lenses with small aberra-
tions. One well-known method to minimize spherical aberrations
in a two-surface light-optical lens is the so-called bending of the
lens. Essentially this bending consists of realizing an asymmetric
design for the two refractive surfaces of the lens. Minimal
spherical aberration is obtained when the shape of the lens
satisfies the simple mathematical relation
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with p¼ ðiþoÞ=ði�oÞ,

and q¼ ðR2�R1Þ=ðR2þR1Þ, ð1Þ

where R1 and R2 are the curvature radii of the lens entrance and
exit surfaces, n is the refractive index, and o and i are the object
and image distances, respectively. q is known as the Coddington
shape factor, and p is the Coddington position factor. A derivation
of Eq. (1) is found in standard optics books, such as [1,2].

Without going into the details or the proof of this interesting
rule for light optics, we simply state that these formulas indicate
that a magnifying lens should have smaller curvature radius on
the object side. For example for glass with n¼1.5 and for
magnification M¼10, we find that R2=R1 ¼�2. From Fig. 1 we
note that a magnifying lens should be bent towards the image
side. Conversely, a de-magnifying lens should be bent to the
object side and a transfer lens with M¼1 should be symmetric. In
these cases the bending of the lens ensures that after the first
refraction the ray remains close to the optical axis, in effect it is
kept approximately parallel to the axis between the two surfaces.

Trajectory electron optics can be formulated in very close analogy
to light ray optics using Fermat’s principle and the least action
principle, respectively [3–5]. This intimate correspondence between
light and electron optics raises the question if some of the wisdom
generated and collected over the centuries in light optical design can
successfully be carried over to electron optics. Thus one may
anticipate that asymmetry could afford a possibility for a fine tuning
of electron lenses. If the general result from light optics translates, one
would expect the best electron lens to have a stronger field close to
the object-side. It is apparent, however, that in a typical electron lens
the electron trajectory is usually more complicated than the ray trace
in a light-optical lens, as the electron optical medium is typically non-
uniform and often anisotropic. In a multi-electrode, electrostatic lens
an electron trajectory also typically comprises converging and diver-
ging sections within a single lens.

In this paper we show that indeed an asymmetrical lay-out of
electron optical einzel lenses offers the possibility to significantly
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lower the spherical aberration. Such a conclusion has indeed been
suggested earlier by [6] based on experimental lens characteriza-
tion work. Surprisingly, the same asymmetric lens lay-out that
minimizes spherical aberration also optimizes the chromatic
aberration. This finding may appear more fortuitous, as the
physical origin for chromatic aberration in light and electron
optics seems not quite comparable. Nonetheless, the possibility of
combining lower spherical and chromatic aberrations emphasizes
the possible advantages of asymmetric lens designs in electron
optics. The basic conclusion from this study is that for an einzel
lens with a given length, the lay-out should be such that the
center electrode is moved away from the symmetrical position
towards the entrance electrode. Within the limits of our work,
this conclusion seems to hold for all magnifications.

2. Lens description

For our calculations we utilize an analytical approach based on
standard integral expressions for the aberration coefficients [7]
and a numerical approach using a finite difference method. We
carry out the calculations for an electrostatic, decelerating, three-
electrode einzel lens as typically used in electron microscopes.
We define the asymmetry of the lens by the ratio so=‘, where so is
the distance between the entrance and the center electrode and
‘ is the length of the lens.

We present two cases of asymmetric lenses: in the first case
the lens has a fixed length and is located at a fixed working
distance from the object point. Here we define the working
distance between the object point and the object-side electrode.
Asymmetry in this case is implemented by moving the center
electrode between the two grounded electrodes. Necessarily
when the magnification or the center electrode position is
changed, the image position is also changed. In the second case,
the lens is also of fixed length, but now the center electrode
position and the object position are kept constant. Thus in this
case asymmetry is implemented by shifting entrance and exit
electrodes together in relation to the center electrode and the
object point, roughly maintaining the object distance of the lens.
Again the image position changes with magnification and asym-
metry. As magnification has a strong effect on the aberration
coefficients, cases for different M are separately compared.

In our example the electrodes have apertures of equal dia-
meter d¼ 0:1‘, where ‘ is the length of the lens, and the
electrodes are of minimal thickness t¼ 0:01‘. This relates to a
1-cm long lens with 1-mm diameter apertures and 0.1-mm thick
electrodes. The minimum spacing between electrodes at 20 kV
for this ‘‘realistic’’ lens due to high voltage breakdown is
1–2 mm, so we consider electrode spacings between 0:15‘ and
0:85‘. For the fixed working distance case the spacing between
the point source object and the first electrode is kept constant at
0:5‘, which is similar to the minimum working distance of

4–10 mm typical of an electrostatic objective lens. For the second
case, the distance between the center electrode and object point
is maintained at ‘.

3. Calculation of aberrations

We compute the aberrations analytically from
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given by Munro in [7], where z is the optical axis, r is a paraxial
ray that crosses the z-axis at the object point o and again at the
image point i, r0i is the slope of that ray at the image point, f is the
electrostatic potential distribution on the z-axis, and fi is the
potential at the image point. An analytic function,
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derived by [8,9], is used to calculate the potential distribution and
its derivatives as well as a numerical solution for the paraxial ray
trajectory. In Eq. (4), VL and VC are the center electrode and
accelerating potentials.

In the numerical approach the aberration coefficients are
computed in SIMION 8, which uses a self-adjusting relaxation
method for the potential and a cylindrically symmetric mesh with
160 points per mm. The mesh extends radially more than 2‘ off
axis and more than ‘ in either direction along the optical axis. The
gradient of the potential is recursively refined to an accuracy of
5�10�5. Twenty electron trajectories with angles less than
10 mrad are traced through the potential distribution with an
adaptive algorithm that recalculates the rays at least once per
mesh point. The center electrode potential is varied by
DVL=VC ¼ 5 V=20 kV increments, where VL is the center electrode
potential and VC is the electron accelerating potential. The para-
xial magnification and spherical aberration are calculated at each
step from the image point trajectories. Chromatic aberration is
calculated from the change in potential along with the change in
paraxial image distance via the relationship Cc ¼�Dz=ðDVL=VLÞ.
Finally, the values of so are chosen randomly.

Angular magnification M¼ a=a0 is used for the magnification
standard, where a is the object side trajectory angle and a0 is the
image side angle. Three different magnifications are examined,
M¼1, 2, and 8. These magnifications may be taken to represent
lenses with different functions, such as transfer lenses with
magnification 1 and projection and objective lenses with larger
magnifications. The calculations are symmetric under interchange
of object and image point, so the results can be adapted to a de-
magnifying-(focusing-) type objective lens. The center electrode
potential is adjusted to maintain this magnification for the
various lens asymmetries. All aberration coefficients were nor-
malized with respect to the aberration in the symmetric case,
so=‘¼ 0:5.

Fig. 1. ‘‘Bending’’ the lens in light optics. The object is on the left, the image to the

right of the lens. Numbers in the first line represent the Coddington shape factor;

the second line shows the optimal radii for the two refractive surfaces.
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