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We demonstrate how the mixed dynamic form factor (MDFF) can be interpreted as a quadratic form.
This makes it possible to use matrix diagonalization methods to reduce the number of terms that need to
be taken into account when calculating the inelastic scattering of electrons in a crystal. It also leads in a
natural way to a new basis that helps elucidate the underlying physics. The new method is applied to
several cases to show its versatility. In particular, predictions are made for directly imaging atomic
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1. Introduction

Nowadays, simulations are indispensable both for planning and
for interpreting experiments in the transmission electron micro-
scope (TEM), in particular when working with electron energy loss
spectrometry (EELS). The key quantity for simulating inelastic
electron scattering is the mixed dynamic form factor (MDFF)
[1-4]. In many cases, this complex quantity is simplified by several
approximations, like, for instance, the dipole approximation.
Recently, it has been shown, however, that this can lead to quite
severe errors [5]. Furthermore, with recent advances of aberration
corrected microscopes, more accurate calculations of the MDFF
will become essential for future experiments.

In this work, we will give a brief repetition of the mixed
dynamic form factor. It has been well known for a long time that in
dipole approximation, the MDFF can be written in the form aq - q’
(+q x q’ in the case of magnetism; see, e.g., [6,7]). Our work goes
beyond this approximation by showing that all multipole orders
can be written as a quadratic form. This is followed by an analysis
of how a basis transformation can bring it into a simpler, diagonal
form that is much easier to handle numerically. Furthermore, the
physical significance of this procedure will be outlined. The
general concept of factorizing and diagonalizing density matrices
(i.e., writing the corresponding density operator as an incoherent
sum of pure states) is well known [8,9] and is also applied in other
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fields (e.g., [10]). However, to the best of our knowledge, it was not
yet applied in the way presented here to simplify the MDFF.

In the last part, the new formalism will be applied to both
existing and new measurement setups to study its applicability
and versatility.

2. The mixed dynamic form factor and its pure state
decomposition

In the most general approach, the quantum mechanical system
consisting of both the probe electron and the sample can best
be described by a density operator p or its matrix elements, the
so-called density matrix p [8]. Adopting the density matrix
formalism instead of the simpler wave function approach is greatly
beneficial as one cannot observe the target's final state directly.
This ignorance of a part of the system after an inelastic interaction
gives rise to a mixed state which can be described very effectively
using the density matrix [3,4,8].

Before the interaction, the probe and the target systems can be
considered independent. For the sake of simplicity, we will
furthermore assume that both systems are initially in a pure state,
i.e.,, each can be described by a single wave function. Then, the
density operator of the whole system before the interaction is
given by
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where ® denotes the direct product. Throughout this paper, we
use small letters when referring to the probe beam and capital
letters when referring to the target.

In first order Born approximation, the density operator after the
inelastic interaction mediated by an interaction potential V is
given by

Deoe = VIDIiY IV 6(E + Er—Ep), @)

where E is the “energy loss” of the probe beam (i.e., the energy
transferred from the probe beam to the target electron), and E;, Er
are the initial and final state energies of the target. Since the target
system is not observed directly, one has to construct the reduced
density operator for the probe beam by summing incoherently
over all possible final states of the target. This reduced density
operator is given by

b= ;mV|1>|i><i|<1|V*\F>5<E + E—Ep), 3)

which can then be propagated elastically through the crystal and
be used to predict the outcome of measurements in different
geometries. It must be emphasized that the ordering of the terms
is vital here, since V in general acts on both the probe and the
target states, which results in an entanglement of the two.

In EELS experiments, the interaction operator V is the Coulomb
interaction operator. Its two most common basis representations
are in configuration space,
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and in reciprocal space,
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Here, e is the elementary charge and ¢ is the permittivity of vacuum.
In these two representations, the reduced density matrix reads
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Here, the MDFF S5(q,q’) and the real-space MDFF (rMDFF) S(r,r")
were introduced which are related by a Fourier transformation.!

! Contrary to the convention adopted in previous works, we include the
1/q*q? term in the definition of the MDFF as it makes the definition more concise
and easy to use.

It is noteworthy that — due to the particular properties of the
Coulomb operator — the rMDFF can be multiplied on the initial
probe wave functions, whereas the MDFF has to be convolved
with them.

In order to perform calculations, one not only has to specify a
basis for the probe states, but also for the target states. Usually,
one chooses a spherical harmonics basis which is particularly
useful for describing the tightly bound initial states that give rise
to EELS core losses. Hence, the initial state is written as \l%jjz),2
while the final states are expanded in terms of |[LM1S). In
the following, we will also sum incoherently over j, since that
quantum number of the initial state is typically unknown. In the
Kohn-Sham approximation, the MDFF is then given by [11-13]
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is the weighted radial wave function overlap [11,14] with the
initial state's radial wave function Rj(r), the final state's radial
wave function u;s(r)®> and the spherical Bessel function j,. The
S ienDEL(D¥T . )* (over a shell of constant energy) is the cross-
density of states (XDOS) and the . ) are Wigner 3j symbols.

While this choice of basis is very convenient as a starting point
(asitis used, e.g., in WIEN2k [15]), it is by no means the only or the
optimal choice. This can be seen by collecting terms depending on
q and terms depending on q'. With the abbreviations
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2 This takes into account the spin-orbit coupling of the tightly bound core
states [11].

3 This is to be understood as the radial wave function of the projection of the
(delocalized) final Bloch state onto an LS state at the scattering center, e.g., a
muffin-tin state.
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