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a b s t r a c t

The nonlinear interactions between flexural and torsional modes of a microcantilever are experimen-

tally studied. The coupling is demonstrated by measuring the frequency response of one mode, which is

sensitive to the motion of another resonance mode. The flexural–flexural, torsional–torsional and

flexural–torsional modes are coupled due to nonlinearities, which affect the dynamics at high vibration

amplitudes and cause the resonance frequency of one mode to depend on the amplitude of the other

modes. We also investigate the nonlinear dynamics of torsional modes, which cause a frequency

stiffening of the response. By simultaneously driving another torsional mode in the nonlinear regime,

the nonlinear response is tuned from stiffening to weakening. By balancing the positive and negative

cubic nonlinearities a linear response is obtained for the strongly driven system. The nonlinear modal

interactions play an important role in the dynamics of multi-mode scanning probe microscopes.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Atomic Force Microscope (AFM) [1] is a crucial instrument
in studying nanoscale objects. Various operation schemes are
employed, which include the use of different cantilever geome-
tries, higher modes or the torsional mode for imaging [2–5]. The
nonlinear tip-sample interactions determine the dynamics in
tapping-mode AFM and have been studied in detail [6,7]. Besides
this extrinsic nonlinearity, the intrinsic mechanical nonlinearities
determine the dynamics of ultra-flexible microcantilevers at high
amplitudes, as shown in a recent study [8]. These nonlinearities
result in an amplitude-dependent resonance frequency and cou-
ple the vibration modes. In clamped–clamped beams, the non-
linear coupling is provided by the displacement-induced tension
[9,10]. For cantilever beams it was shown that the coupling
between the modes can be used to modify the resonance line-
width [11]. In a multi-mode AFM [12,13], these modal interac-
tions are of importance, since the resonance frequency of one
mode depends on the amplitude of the other modes.

In this work, we experimentally demonstrate the intrinsic
mechanical coupling between the flexural and torsional modes
of a microcantilever. The resonance frequency of one mode
depends on the amplitude of the other modes. The flexural modes
are coupled via the geometric and inertial nonlinearities. The
torsional modes exhibit frequency stiffening at high amplitudes,
which originates from torsion warping [14]. Interestingly, the
nonlinearity constant of one torsional mode changes sign when

another torsional mode is driven at high amplitudes. Finally, the
coupling between the torsional and flexural modes is studied.

2. Experiment

Microcantilevers are fabricated by photolithographic pattern-
ing of a thin low-pressure chemical vapor deposited silicon
nitride (SiN) film. Subsequent reactive ion etching transfers the
pattern to the SiN layer, and the cantilevers are released using a
wet potassium hydroxide etch, resulting in a undercut-free
cantilever. The dimensions are length�width�height ðL�w�

hÞ ¼ 42� 8� 0:07 mm3. These floppy cantilevers allow high
amplitudes and thus facilitate the study of nonlinearities. The
cantilever is mounted onto a piezo actuator, which is used to
excite the cantilever. The cantilevers are placed in vacuum
(pressure o10�5 mbar) to eliminate air-damping and to enable
large vibration amplitudes, where nonlinear terms in the equation
of motion dominate the dynamics. The cantilever motion is
detected using a home-made optical deflection setup which
resembles the detection scheme frequently used in scanning
probe microscopes. The flexural and torsional vibration modes
are detected with a sensitivity of 71pm=

ffiffiffiffiffiffiffi
Hz
p

[15]. A schematic
of the measurement setup is shown in Fig. 1(a). The cantilever
displacement signal is measured using either a network (NA) or
spectrum analyzer (SA). To drive a second mode, a separate RF
source is used.

First, the flexural vibrations are characterized by measuring
the cantilever frequency response at different resonance modes.
The first flexural mode shown in Fig. 1(b) occurs at 54.8 kHz with
a Q-factor of 3000. The resonance frequency of the second mode is
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347 kHz (Q¼3900), which is 6.33 times higher than the first
resonance mode, in agreement with the calculated ratio
f R,F2=f R,F1 ¼ 6:27, following from Euler–Bernoulli beam theory. Not
shown is the third flexural mode at 974.9 kHz, with f R,F3=f R,F1 ¼ 17:8,
near the expected ratio of 17.6. This indicates that in the linear regime
the cantilever beam is described by the Euler–Bernoulli beam theory.
Throughout the manuscript, the subscripts Fi and Ti indicate the
frequency span around the ith flexural (F) or torsional (T) resonance
mode. The subscript R refers to the resonance frequency of that
particular mode.

The torsional modes are characterized by rotating the cantilever
over 901 in the setup; the two-segment photodiode is then sensitive
to vibrations corresponding to torsional resonance modes [15]. The
frequency response of the first two torsional modes is shown in
Fig. 1(b). From theory, the ratio between the lowest two resonance
frequencies of the torsional modes is 3, which is close to the
measured ratio of f R,T2=f R,T1 ¼ 1638 kHz=535:4 kHz¼ 3:06. The Q-
factors of the first and second torsional mode are 4300 and 3200
respectively.

At high drive amplitudes, the flexural and torsional modes
become nonlinear. The nonlinearity of the flexural modes in a
cantilever beam was theoretically studied by Crespo da Silva
[16,17]. To include the torsional nonlinearity, the equations of
motion are extended (Appendix A). For the flexural and torsional
modes, the nonlinearity causes a Duffing-like frequency stiffening
when the mode is strongly driven [18,19] leading to a bistable
vibration amplitude. This bifurcation is observed in all modes
studied in this paper. These nonlinearities are responsible for the

coupling between the flexural–flexural, torsional–torsional and
flexural–torsional modes.

3. Modal interactions in a microcantilever

We now experimentally demonstrate the coupling between
the modes of a microcantilever. We use a two-frequency drive
signal to excite two resonance modes of the cantilever simulta-
neously while we measure the motion of one mode. First, we
focus on the interactions between the flexural modes. Then we
turn our attention to the torsional modes, starting with the
amplitude-dependent resonance frequency of the torsional vibra-
tions, followed by the demonstration of the coupling between the
lowest two torsional modes. Finally, the interactions between
flexural and torsional modes are discussed.

3.1. Flexural–flexural mode interaction

To investigate the interactions between the two lowest flex-
ural modes, the thermal motion of the first mode is measured
with a spectrum analyzer, while the RF source strongly drives the
second mode. The thermal noise spectra of the second mode as a
function of the drive frequency of the second mode are shown in
Fig. 2(a). The color scale represents the power spectral density of
the displacement around the resonance frequency of the first
mode. A shift of the resonance peak of the first mode is observed
as the drive signal at f F2 approaches the nonlinear resonance of

Fig. 1. Measurement setup. (a) Optical deflection setup showing the laser beam, which reflects from the cantilever surface. The spot of the reflected laser beam is

modulated in time by a frequency corresponding to the cantilever motion. The cantilever is mounted onto a piezo actuator in vacuum. Network (NA) and spectrum analysis

(SA) is performed on the signal from the two-segment photodiode. (b) Frequency responses of the first and second flexural (top panels) and torsional (bottom panels)

modes. Inset are the calculated mode shapes from Euler–Bernoulli beam theory.

55.35

55.4

55.45

353.1     353.4       353.7        3545.552.55

353.2

353.6

354

Fig. 2. Flexural–flexural mode interactions. (a) Frequency spectra of the thermal motion of the first flexural mode ðf F1Þ, when the second mode is driven through its

resonance frequency. Colorscale represents the power spectral density of the displacement noise of mode 1. As the peak width remains constant, there is no significant

change in the Q-factor. The motion of the second mode tunes the resonance frequency of the first mode. (b) The resonance frequency of the first mode f R,F1 versus the drive

frequency of the second flexural mode. The nonlinear response of the second mode is reflected in the fitted resonance frequency of the first mode. Inset: the direct

measurement of the nonlinear frequency response of the second mode [20].
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