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a b s t r a c t

In this paper, we present the application of the T-Matrix method (TMM) for the calculation of Electron

Energy Loss Spectra (EELS), cathodoluminescence spectra (CLS) and far-field patterns produced by

metallic nano-particles. Being frequently used in electromagnetic scattering calculations, the TMM

provides an efficient tool for EELS calculations as well and can be employed, e.g. for the investigation of

nano-antennas.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Electron Energy Loss Spectroscopy (EELS) has recently been
used to study the electromagnetic excitations of single metallic
nano-particles and systems thereof [1]. Typically, these experi-
ments are carried out in a Transmission Electron Microscope [2],
where fast electrons (50–300 keV kinetic energy) are directed at
the target particle in a tightly focused beam. The incident electrons
cause charge oscillations in the particle, leading to the excitations
of surface plasmons. This induced field acts back onto the elec-
trons, which leads to characteristic losses in the order of several
electron volt. A part of these induced fields may be re-radiated in
the form of propagating electromagnetic waves, a process termed
cathodoluminescence (CL) [3,4]. Here, not only the total amount of
radiation, but also the angular distribution of the emission is of
interest and can be measured in experiments [5]. In Electron
Energy Gain Spectroscopy experiments [6], an additional light
pulse can be used to excite the particle leading to an increased
electron energy. This technique was shown to have an improved
energy resolution as compared to conventional EELS experi-
ments [7]. We will, however, focus on EELS and CL in the following.
The interpretation of EEL and CL spectra requires the computation
of the induced near-field and also the scattered far-field.
The T-Matrix method (Transition-Matrix method, TMM) is well

suited for these calculations and provides an efficient tool, not only
to calculate the spectra of single particles of almost arbitrary shape,
but also systems thereof.

We will describe the TMM in Section 2 before showing how
the EEL spectra can be calculated in Section 3. Next, the method
will be applied to a single spherical particle in Section 4.1. Then,
we will simulate EEL spectra, CL spectra and far-field patterns for
a prolate spheroidal particle in Section 4.2 and for a sphere dimer
in Section 4.4 before concluding the paper.

2. T-Matrix method

The T-Matrix method (TMM) is an exact semi-analytical
method for solving the problem of light scattering by small
particles. The theory of the method was introduced by Waterman
[8] and outlined many times. A detailed review and study can be
found in the books by Mishchenko [9] and Doicu et al. [10] and
also in the reviews by Mishchenko et al. [11,12].

The TMM solves the boundary-transmission problem for a
scatterer occupying the volume V illuminated by a monochro-
matic electromagnetic wave. The incident field Einc (illumination)
and scattered field Escat (perturbation of illumination caused by
the scatterer) are expanded into spherical vector wave functions
(SVWF) [10]

Einc ¼
X1
n ¼ 1

Xn

m ¼ �n

amnM1
mnðksrÞþbmnN1

mnðksrÞ, ð1Þ
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where ks ¼
ffiffiffiffiEs
p o=c is the wave number in the ambient medium,

jn and hn are the spherical Bessel and Hankel functions; amn, bmn

and fmn, gmn are the expansion coefficients of the incident and
scattered field, respectively. The superscript ‘1’ denotes regular
and the superscript ‘3’ radiating fundamental solutions of Max-
well’s equations in R3

\f0g. Note that u1;3
nmðkrÞ are the fundamental

solutions of the scalar Helmholtz equation. In actual calculations,
the sum over the index n has to be truncated by the number Nr,
whose value depends on the desired accuracy. The expansion
coefficients are related by the T-Matrix (Transition-Matrix, TM)

f mn

gmn

 !
¼ T

amn

bmn

 !
¼
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T2;1 T2;2

0
@
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A amn

bmn

 !
: ð9Þ

The TM contains the whole information about the scattering
process except the incident wave. Once calculated, it can be
reused for different excitation fields at the same frequency.
Special properties of the SVWF also enable us to recompute the
TM for the shifted or rotated scatterer, cf. Appendix B of Ref. [10].
The method works correctly as long as the field expansion in (2) is
valid. At least, this is true outside the smallest sphere circum-
scribing the scatterer and here, we will obey this restriction.
However, extensions of the method exist to overcome this
limitation by expanding the near-field within the circumscribed
sphere in both regular and radiating SVWF [13].

The null-field method (NFM), sometimes called the extended
boundary condition method (EBCM), is the standard approach to
compute the TM. It is based on the Stratton–Chu representation
theorem [14] for the electromagnetic fields. Let ‘þ ’ and ‘� ’
denote the areas outside and inside the scattering volume, then,
for the fields E7 , the Stratton–Chu equations combined with the
boundary condition n� Eþ ¼ n� E� yield

r �

Z
@V

n� E�ðr
0Þ � gðks,r,r0Þ dSðr0Þ

þ
j

k0Es
r �r �

Z
@V

n�H�ðr
0Þ � gðks,r,r0Þ dSðr0Þ

¼
�Einc , rAV

Escat , rAR3
\V ,

(
ð10Þ

where gðks,r,r0Þ is the Green function of the Helmholtz equation.
For the case rAV , Eq. (10) is known as null-field equation, and
enables us to obtain the surface fields n� E� and n�H� from the
excitation field Einc . For the other case, Eq. (10) expresses the
scattered field Escat in terms of the surface fields. This equation is
known as the Huygens principle.

The surface fields in (10) are expressed in suitable basis
functions, e.g. conventionally, these are regular SVWF

E�ðr
0Þ ¼

X1
n ¼ 1

Xn

m ¼ �n

pmnM1
mnðkir

0ÞþqmnN1
mnðkir

0Þ: ð11Þ

Applying the field expansion in (1) and the Green function
expansion in terms of SVWF yields two linear systems binding
the coefficients famn,bmng3fpmn,qmng and ff mn,gmng3fpmn,qmng.
The TM is computed from these equations. For spherical particles,
the solution of the NFM is well-known and corresponds to the
Mie solution [15] as demonstrated by Hill and Barber [16].

The computation of the EEL spectra of spherical particles was
already studied using the Mie theory [17]. Particularly, the
expansion coefficients for the electric field of a moving electron
were obtained. Adapted to our set of basis functions, which differs
from the one used by Garcı́a de Abajo [17], they read as
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Bþmn ¼ Aþmþ1,n
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with g¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=c2

p
, the modified Bessel function Km, the

impact parameter b and Cðmþ1=2Þ
n�m being the Gegenbauer polyno-

mial, cf. Appendix C of Ref. [1]. This enables us to use the moving
electron as an excitation within the TMM formalism, as long as
the electron trajectory remains outside the smallest sphere
circumscribing the scatterer.

Taking into account recent extensions of the method men-
tioned in [18], the TMM allows us to treat isotropic/anisotropic
solid/layered/inhomogeneous particles of almost arbitrary shape.
Strongly elongated particles can accurately be treated using the
null-field method with discrete sources (NFM-DS) [18], where
several SVWF expansions with different origins are used for the
representation of the internal and surface fields (11). Using a
multiple-scattering approach, the TM of a system of particles can
be calculated from the TMs of the individual particles, cf. Section
4.4. With all these capabilities, the method allows us to treat the
particle shapes typically used in EELS experiments like nano-rods
and spheres [19], rounded triangles [20] or dimers of layered
spheres [21], and makes the TMM extremely well suited for the
simulation of such EEL and CL spectra.

3. Calculating the EEL and CL spectrum

We assume a single electron with charge q moving in the
z-direction along the trajectory reðtÞ ¼ r0þvt as depicted in Fig. 1.
On approaching the target particle, it will interact with the
particle’s electrons, which will cause an induced electric field.
As in the Mie theory, we will term this induced field Escat .
This field acts back onto the incident electron and leads to an
energy loss that is given by the work done against the induced
field. Defining the probability that the electron loses a certain
amount of energy _o as PðoÞ, we can also express the loss as
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