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a b s t r a c t

Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in

electron tomography. Due to artifacts related to image series acquisition and reconstruction, global

thresholding of reconstructions computed by established algorithms, such as weighted backprojection

or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially

Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense

nanoparticles of constant composition. The particles are segmented directly by the reconstruction

algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As

no properties are assumed for the other compositions of the sample, the technique can be applied to

any sample where dense nanoparticles must be segmented, regardless of the surrounding composi-

tions. For both experimental and simulated data, it is shown that PDART yields significantly more

accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Electron tomography deals with the reconstruction of a three-
dimensional (3D) representation of a microscopy sample from a
tilt series of two-dimensional (2D) images. This technique has
been applied successfully in materials science since the late
1980s [1]. Several imaging modes have been used for acquiring
the projection images, in particular, bright-field TEM [2,3], annu-
lar dark field TEM [4], high-angle annular dark-field scanning TEM
(HAADF STEM) [5–9], and energy-filtered TEM (EFTEM) [10–13].

Quantitative interpretation of the reconstructed 3D volume is
often hampered by the presence of artifacts: structured distor-
tions that do not correspond with the actual sample. In particular,
limits on the number of projection images imposed by sample
contamination or beam damage give rise to such artifacts. Further-
more, the limited spacing for specimen holders in between the pole
pieces of the objective lens often restricts the range of tilt angles to
about 7701, leading to a missing wedge in the collected data. As a
consequence, features perpendicular to the electron beam are better
resolved than features parallel to the beam, resulting in anisotropic
resolution and distortions of the structure.

For many imaging tasks in materials science, the goal is to obtain
an accurate segmentation of particular structures (i.e., particles,
pores, tubules, etc.). Of particular importance is the problem of
segmenting nanoparticles within various matrix materials [5–7,14].
Due to artifacts related to image acquisition and reconstruction,
segmenting these structures from gray level volumes computed by
established algorithms, such as weighted backprojection (WBP) or
SIRT [15], may result in unreliable and subjective segmentations. In
practice, reconstructions are often segmented using a global thresh-
old. Since the threshold is estimated visually, this approach is highly
subjective. Moreover, it does not account for the effect that the
intensity of the features in the reconstruction strongly depends on
their size [16]. Fully manual segmentation may avoid this effect, but
remains a time consuming and subjective approach.

Recently, discrete tomography algorithms have demonstrated
the ability to overcome some of these limitations by exploiting
prior knowledge. Discrete tomography is based on the assump-
tion that the sample consists of only a few different compositions.
Two rather different variants of discrete tomography have been
applied to electron tomography. The first variant was recently
applied to the reconstruction of crystalline nanoparticles at
atomic resolution [17,18]. For this variant, it is assumed that the
crystal contains only a few atomic species, and that the atoms lie
on a regular grid. Together, these assumptions allow to create a
reconstruction from as few as two or three projections. For the
second variant, which can be applied at lower resolutions, it is
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only assumed that the sample consists of a few different compo-
sitions, each corresponding to a particular gray level in the
reconstructed image. The discrete tomography algorithms that
appear in this paper are of the second variant.

Major advantages of discrete tomography algorithms are that
they require fewer projection images compared to alternative
methods such as SIRT, and that missing wedge artifacts are strongly
reduced [19]. Moreover, as the final result of the reconstruction
process is a segmented image, a separate segmentation step is no
longer required. The Discrete Algebraic Reconstruction Technique

(DART) for discrete tomography has been successfully applied to a
broad range of material samples [20–23]. The main restriction for
using discrete tomography is that the entire sample must satisfy the
discreteness requirement. If the sample contains a mixture of
compositions, the results of discrete tomography cannot be relied
upon, as the key assumptions are violated.

In this paper, we introduce the Partially Discrete Algebraic

Reconstruction Technique (PDART) for computing accurate segmenta-
tions of dense nanoparticles of constant composition, regardless of
the compositions in the remaining part of the sample. Embedded
nanoparticles such as catalyst particles are often dense structures
compared to their surroundings (e.g., porous materials), resulting in
a high gray level in the reconstructed image. PDART is based on the
assumption that the densest composition occurs in homogeneous
regions that have a constant gray level. These dense regions are
segmented discretely, while the surrounding regions are recon-
structed using continuously varying gray levels. If the assumption
of a homogeneous densest composition holds, the imaging mode
that is used to record the tilt series – HAADF STEM for both samples
in this paper – is not a restriction on the applicability of PDART, as
long as the selected imaging mode is compatible with tomography.
PDART imposes no restrictions on the nature of the sample (except
that the densest composition must be homogeneous), which means
that the application of the algorithm is not restricted to any specific
type of samples.

This paper is structured as follows. In Section 2, the problem of
segmenting dense particles is introduced, and the PDART algo-
rithm is defined. Section 2 also introduces the figure of merit that
is used for quantitative evaluation of the results. It concludes by
describing how the parameters of the algorithm can be optimized
automatically. In Section 3, the capabilities of PDART are assessed
using two different experimental datasets and a number of
simulation experiments. The results are discussed in Section 4
and conclusions are drawn in Section 5.

2. Algorithm

Before describing the PDART algorithm, we start by giving an
example of its applicability. Fig. 1 illustrates the problem of
nanoparticle segmentation. Fig. 1a shows a phantom (i.e., a
simulated image), representing a microscopy sample that contains

nanoparticles of only a few pixels each, embedded in a cylinder of
varying composition. From this phantom, a synthetic dataset was
created by calculating 28 evenly spaced projections in the range of
7701. Fig. 1 also shows WBP (Fig. 1b), SIRT (Fig. 1c), DART (Fig. 1d),
and PDART (Fig. 1e) reconstructions of this dataset.

The gray level reconstructions computed by WBP and SIRT
have limited visual quality, as a result of the small number of
projection angles and their limited angular range. When thresh-
olding these images to determine the size and shape of the
particles, it is not clear how the threshold should be chosen in
an optimal way. The DART reconstruction, shown in Fig. 1d, is
already segmented, yet the segmentation is not accurate at all
when compared to the original phantom. The varying composi-
tion of the disk surrounding the nanoparticles violates the key
discreteness assumption imposed by the DART algorithm. The
PDART reconstruction, shown in Fig. 1e, seems much more
accurate than the other reconstructions.

2.1. Algorithm description

The PDART algorithm has been designed to allow for accurate
particle segmentation in cases where neither continuous methods
nor fully discrete tomography leads to good results. The algorithm
is based on the assumption that the particles have a constant
composition, and that this composition represents the highest
gray level in the reconstructed volume. PDART combines an
iterative reconstruction algorithm, such as SIRT, with intermedi-
ate segmentation steps. Once pixels have been identified as
‘‘particle’’, they are directly segmented (i.e., their value is set to
the constant gray level for the particles) and kept fixed at this
value in subsequent SIRT iterations. Note that, throughout this
paper, we use the additive variant of SIRT, as described in [24].

Fig. 2 shows a flowchart of the PDART algorithm. Besides
having the projection data as input, the algorithm has two
parameters: a threshold t and a gray level r4t, which corre-
sponds to the gray level of the particles. Optimal values for both
parameters can be determined automatically, as is outlined in
Section 2.3.

Initially, the set F of fixed pixels is empty. In an iterative loop,
the algorithm starts by performing one or more SIRT iterations on
the entire image volume. Whenever one or more pixels are
assigned a higher gray level than the threshold t, it is decided
that these pixels belong to a particle. Such pixels are added to F:
their gray level is set to r and is kept fixed at this value during all
subsequent SIRT iterations. In this way, the set F gradually
expands as pixels are added, until some termination condition
is satisfied. Typically, one aims for terminating the algorithm
when no new pixels have been added to F for a sufficiently large
number of iterations.

In its original form, the SIRT algorithm computes a weighted
least square solution of the system Wx¼ p, where x denotes the
unknown image, p denotes the projection data, and W denotes the

Fig. 1. A simulation phantom and several reconstructions. The phantom represents a cylindrical sample that contains nanoparticles of only a few pixels each, embedded in

a material of varying composition. (a) Phantom, (b) WBP, (c) SIRT, (d) DART and (e) PDART.
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