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a b s t r a c t

We introduce a method of calculation of the analytical expansion of the field near the axis that is based

on an application of Green’s theorem. The approach is demonstrated on an example of a round

electrostatic unipotential lens with field computed by the finite-element method and results are

compared to methods of Hermite polynomials and wavelet transformation which are used in electron

optics. The work is motivated by application to calculations of aberration coefficients where the high

order axial field derivatives must be known.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Accurate calculations of the field and ray-tracing allow
construction of better electron optical systems; moreover, the
possibility of eliminating all primary aberrations [1] leads to the
situation where the knowledge of the aberrations of the fifth
order is necessary.

Several ways of calculating of the higher order aberrations
exist. The results of ray-tracing in numerically computed field can
be used for calculation of pairs of the object ray properties and the
image ray properties, which are fitted on an assumed transition
map [2]. The advantage of the method is simplicity of use. Only
the values of the field at nodal points, which is interpolated at an
arbitrary position, are required.

On the other hand, the methods based on the expression of
aberration coefficients in the form of aberration integrals can be
used. The results allow description of the influence of each optical
element or the general properties of the aberration coefficient to
establish, for example, Scherzer’s theorem for spherical aberration
of a round lens [3,4]. Nevertheless, the derivation of aberration
integrals for general system is complicated even in the case of the
third aberration order. The aberration integrals of the fifth order
were calculated for a rotationally symmetric system with
deflection field [5,6]. The form of aberration integrals of the
higher orders is so complicated that the analysis gets impossible.

The method of differential algebra (DA) provides a connection
between the two approaches. The results of calculations are only
numerical values of the aberration coefficients. It can be easily

applied to the calculation of higher order aberrations. However,
the accuracy of the calculation is limited by the accuracy of the
field.

The aberration integrals and the DA method use the field in the
form of the analytical expansion into powers of the distance from
the optical axis. For example, in the case of the rotationally
symmetric electrostatic potential [7] this is
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where r is the distance from the axis and f is the axial potential.
The finite-element method (FEM) is the most commonly used

for numerical calculation of electrostatic and magnetic fields. The
result is the electrostatic potential at the nodal points of the
discretization mesh. Even if the potential is calculated very
accurately, the determination of the analytical expansion is not a
trivial task. Because the axial potential is known only at a discrete
set of points (nodal points on the axis), calculation of its
derivatives in (1) is not straightforward. Several methods are
used to deal with the issue.

The first one implemented by Munro et al. was presented in
[8,9]. It is based on the expansion of the axial function into a
series of the Hermite functions [10]. The axial potential of a
unipotential lens fulfils this condition; in the case of an
acceleration or immersion lens a simple transformation must be
done before the expansion [9]. When the form of the expansion is
known, the derivatives of the axial function are computed by
differentiation of each term of the series.

Another method proposed by Berz [11] was implemented in
COSY INFINITY [12] and used, for example, by Liu [13]. It is based
on the discrete wavelet transformation. The function values must

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ultramic

Ultramicroscopy

0304-3991/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.ultramic.2010.04.018

� Corresponding author. Tel.: +420 5 41514294; fax: +420 5 41514402.

E-mail address: radlicka@isibrno.cz (T. Radlička).
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be known at equidistant set of points zk. The axial potential then
takes the form

fðzÞ ¼
1ffiffiffiffi
p
p

s
XN

k ¼ 1

Vkexp �
ðz�zkÞ

2

ðDzsÞ2

 !
, ð2Þ

where s determines the width of Gaussian functions and Dz is a
distance of two neighbours in the set of equidistant points. The
structure of (2) shows the idea of the method. The value of
the axial potential at any point on the axis is given mainly by the
values at several surrounding points. The effect of the value of
the potential at zk on the value of the potential in z is determined
by the distance of the point zk from the point z. The procedure
causes smoothing of the function which is controlled by the
parameter s. In other words, the level of smoothing grows with
growing s. Generally it can be said that the higher smoothing
means better properties of derivatives but higher loss of details in
the function dependence. The derivatives are calculated by
differentiating the series (2).

These two approaches are simple but they can lead to
inaccurate results. We will introduce methods utilizing the fact
that the field satisfies the Laplace equation. We will compare the
results of all methods mentioned on the example of a unipotential
round electrostatic lens presented in paper [13].

2. The field in the vicinity of the optical axis

In a charge-free domain the electrostatic field is determined by
the Laplace equation for the electrostatic potential and the
magnetic field by the Laplace equation for the magnetic scalar
potential [7,14].

Because the equations are equivalent, we will describe only the
electrostatic case.

Using the method of separation of variables, we can find the
multipole expansion of the electrostatic potential in the form

F¼
X1

m ¼ 0

Fmðr,z,jÞ ¼
X1

m ¼ 0

Fm,sðr,zÞsinðmjÞþFm,cðr,zÞcosðmjÞ,

ð3Þ

where F0 is a rotationally symmetric field, F1 a dipole field, F2 a
quadrupole field, etc. Let us note that r, z, and j are standard
cylindrical coordinates. For each Fm,c and Fm,s it can be shown
that [15]

Fm,a ¼
X1
n ¼ 0

ð�1Þncð2nÞ
m,a ðzÞ
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where the analytical functions cm,aFthe generalized gradients—-

were introduced. Their meaning can be seen from (4):

cm,aðzÞ ¼ D̂mFm,aðr,zÞ ¼m!
Fm,a

rm

����
r ¼ 0

, ð5Þ

where the differential operator D̂m ¼ @m=@rmjr ¼ 0 was defined. The
value of Fm,a=rm can be computed directly using FEM [16].

The derivatives of generalized gradients must be known for the
complete determination of the analytical expansion, that is, the
derivatives of cm,a must be computed from a set of discrete points.
The methods based on Hermite functions or Gaussian wavelet
interpolation were shortly summarized in the Introduction, now
we describe the methods based on the fact that in the charge free
domain the electrostatic and magnetic fields satisfy the Laplace
equation.

3. The method of infinite cylinder

The first method for calculating the derivatives of generalized
gradients that uses the fact that the field is a solution of Laplace
equation was introduced by Venturini and Dragt [15]. Let us
suppose that we know the field on an infinite cylinder with the
axis that coincides with the axis z, that is, the potential is known
on the surface r¼R. Moreover, we consider that the Laplace
equation is satisfied inside the cylinder or, in the region where it
is not satisfied, the field vanishes. These requirements are
satisfied in case of lenses where the field smoothly vanishes with
the distance from the center of the lens. In such a case the nth
derivative of the generalized gradients can be found in the form
[15]
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where ~Fm,aðkÞ is the Fourier image of Fm,aðR,zÞ and Im is the
modified Bessel function [10]. If the function Fm,aðR,zÞ is known at
equidistant set of points {zi}, the speed of calculation can be
increased by the FFT algorithm.

Accuracy of the method depends on the accuracy of potential
computed by the FEM. The errors of the method consist of two
parts. The first one is the random error of solution of algebraic
equations in the FEM algorithm. This error can be very small
(10�12 in order of magnitude) and it has random character. The
second one, the discretization error, is due to the nature of a mesh
method. This error is much larger (10�4 in order of magnitude)
and it does not have random properties. It can be estimated by
comparing the results using the original mesh and a mesh that is
twice as denser in both directions [17].

The random error influences mainly the high frequencies in
the Fourier image ~Fm,a, which is multiplied by km + n/Im(kR) in
Eq. (6). It tends to zero for large k; however, small values of the
cylinder radius R may slow down the rate of the convergence. To
avoid the possible inaccuracy in high order derivatives we can
simply estimate the error. Let us consider the perturbation of Fm,a
in the form DFm,aðzÞ ¼ eðzÞFm,aðzÞ, where eðzÞ represents uniformly
distributed random numbers in the range ½�e0,e0�. Using the
linearity of the Fourier transform, the error of generalized
gradients takes a form analogous to (6),

DcðnÞm,aðzÞ ¼
inffiffiffiffiffiffi
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On the other hand, the influence of the discretization error is
mainly in the low frequency range. It can also be compensated by
the rapidly increasing denominator Im(kR), except for the case of
zero derivative of the rotationally symmetric field, in which the
denominator is I0(0)¼1 for k¼0 and thus for any R. Hence the
effect of zero frequency in Fourier decomposition is not
eliminated with growing radius of the cylinder and the method
is not suitable for interpolation of the zero derivative of the axial
potential f. However, this deficiency is already eliminated for the
first derivative by multiplicative factor k. On the other hand, the
potential values are often most accurate on the axis and errors
grow in the direction to electrodes [17]. In practical calculation it
is necessary to analyze, whether the increasing radius of the
cylinder compensates the growing error of potential.

Until now, we computed the generalized gradients from
potential values on one cylinder; however, we can combine the
results from many cylinders. The final generalized gradient values
can be computed as weighted averages, in which the weights are
determined from errors of the method for individual radii of the
cylinders (the lower the error, the higher the weight). This can
improve the results and make the method more stable.
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